首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We previously showed 1 that a peptide, Ac-hE18A-NH(2), in which the arginine-rich heparin-binding domain of apolipoprotein E (apoE) [residues 141;-150] (LRKLRKRLLR), covalently linked to 18A (DWLKAFYDKVAEKLKEAF; a class A amphipathic helix with high lipid affinity), enhanced LDL uptake and clearance. Because VLDL and remnants contain more cholesterol per particle than LDL, enhanced hepatic clearance of VLDL could lead to an effective lowering of plasma cholesterol. Therefore, in the present article we compared the ability of this peptide to mediate/facilitate the uptake and degradation of LDL and VLDL in HepG2 cells. The peptide Ac-hE18A-NH(2), but not Ac-18A-NH(2), enhanced the uptake of LDL by HepG2 cells 5-fold and its degradation 2-fold. The association of the peptides with VLDL resulted in the displacement of native apoE; however, only Ac-hE18A-NH(2) but not Ac-18A-NH(2) caused markedly enhanced uptake (6-fold) and degradation (3-fold) of VLDL. Ac-hE18A-NH(2) also enhanced the uptake (15-fold) and degradation (2-fold) of trypsinized VLDL Sf 100;-400 (containing no immuno-detectable apoE), indicating that the peptide restored the cellular interaction of VLDL in the absence of its essential native ligand (apoE). Pretreatment of HepG2s with heparinase and heparitinase abrogated all peptide-mediated enhanced cellular activity, implicating a role for cell-surface heparan sulfate proteoglycans (HSPG). Intravenous administration of Ac-hE18A-NH(2) into apoE gene knockout mice reduced plasma cholesterol by 88% at 6 h and 30% at 24 h after injection. We conclude that this dual-domain peptide associates with LDL and VLDL and results in rapid hepatic uptake via a HSPG-facilitated pathway.  相似文献   

2.
We have shown that Ac-hE18A-NH2, a dual-domain cationic apolipoprotein-mimetic peptide, reduces plasma cholesterol levels in dyslipidemic mice. Two single-domain cationic peptides based on the lytic class L peptide 18L were developed to test the hypothesis that a single-domain cationic amphipathic peptide can reduce atherosclerosis in apolipoprotein (apo)E null mice when orally administered. To incorporate anti-inflammatory properties, aromatic residues were clustered in the nonpolar face similar to peptide 4F, resulting in modified 18L (m18L). To reduce lytic properties, the Lys residues of 18L were replaced with Arg with the resulting peptide called modified R18L (mR18L). Biophysical studies showed that mR18L had stronger interactions with lipids than did m18L. Peptide mR18L was also more effective than m18L in promoting LDL uptake by HepG2 cells. ApoE null mice received normal chow or chow containing m18L or mR18L for six weeks. A significant reduction in plasma cholesterol and aortic sinus lesion area was seen only in the mR18L group. Plasma from mice administered mR18L, unlike those from the control and m18L groups, did not enhance monocyte adhesion to endothelial cells. Thus oral administration of mR18L reduces plasma cholesterol and lesion formation and inhibits monocyte adhesion.  相似文献   

3.
A partial rat apo E-beta-galactosidase fusion protein was produced in Escherichia coli Y1089 infected with recombinant lambda GT11 obtained by immunoscreening of a rat liver cDNA library with an anti-rat LDL antiserum. Partial cDNA overlapped the apo E mRNA sequence coding for apo E binding domain towards the LDL(B/E) receptor up to codon for Arg-139. Fusion protein specifically bound to human fibroblasts. The high-affinity component exhibited a Kd of 5 x 10(-8) M and 4.1 x 10(5) sites per cell. Fusion protein binding to fibroblasts was mediated by their apo E moiety and not by beta-galactosidase since: (1) specific binding of fusion protein was competed out by human LDL; (2) beta-galactosidase did not compete with fusion protein binding; and (3) human fibroblasts from a patient with familial hypercholesterolemia, deficient in LDL(B/E) receptor, bound fusion protein 10-times lower than control fibroblasts. It was demonstrated that partial fusion protein retained the functional activity of the native apo E. However, compared to full-length native or engineered apo E, fusion protein was able to bind fibroblasts without being complexed with phospholipids. Fusion proteins might be a useful tool for studying the functional efficiency of the LDL(B/E) receptor and for mapping residues and domains involved in the binding process.  相似文献   

4.
Cellular metabolism of human plasma intermediate-density lipoprotein (IDL)   总被引:2,自引:0,他引:2  
The cellular metabolism of human plasma intermediate-density lipoprotein (IDL) was investigated in cultured human skin fibroblasts and hepG-2 cell in the absence and presence of exogenous recombinant or plasmatic apo E-3. IDL (d 1.006-1.019 g/ml) and LDL (d 1.019-1.063 g/ml) were prepared by centrifugation from the plasma of apo E-3/3 or 4/3 normolipidemic human subjects. Without added apo E-3, IDL binding and cell association are similar or slightly reduced while their degradation is one third to one half. This results in degradation to binding ratios for IDL that are half those for LDL. Exogenous apo E-3 enhances binding, association and degradation of IDL by 50-150%, but the degradation to binding ratio remains low. Exogenous apo E-3 also increased the ability of IDL but not LDL, to down-regulate the incorporation of [14C]acetate to sterol by the cells. The optimal concentration of apo E-3 is 4 micrograms protein/10 micrograms IDL protein and at that concentration appreciable amounts of the apo E are found associated with the lipoprotein. Apo E-2 has no effect on the cellular metabolism of IDL and apo E-3 is not effective in receptor-negative human fibroblasts. Monoclonal antibodies that block apo E binding to B,E (LDL) receptor (1D7) abolish the cellular metabolism of IDL while antibodies against B-100 (4G3) are ineffective. In competitive binding experiments, IDL is slightly more effective than LDL in displacing 125I-LDL from receptors in hepG-2 cells and appreciably more effective than LDL when tested against 125I-IDL. Apo E-3 increases the capacity of IDL to compete with either 125I-LDL or 125I-IDL. Addition of apo E-3 also increases the binding affinity of IDL to hepG-2 receptors, with Kd values of 2.50, 0.93 micrograms protein/ml, respectively. The study demonstrates the essential role that functional apo E molecules play in the interaction of human IDL with cellular receptors. Yet, in spite of presence of apo E in IDL (2-3 molecules/particle) and enrichment of IDL with apo E-3 (to 4-5 molecules/particle) the proteolytic degradation of the lipoprotein by specific cellular receptor is similar to LDL.  相似文献   

5.
Ovarian androgen production is rate limiting for follicular maturation and can induce follicular atresia. Thus, it is important to define the actions of the intraovarian agents, such as apolipoprotein (apo) E, that modulate theca cell androgen production. Theca cell androgen production is stimulated at low concentrations and inhibited at higher concentrations of native apo E. The apo E peptide, acetyl-Y(LRKLRKRLLRDADDL)(2)C or acetyl-Y(141-155)(2)C, has low density lipoprotein (LDL) receptor and LDL receptor-related protein-binding activity, and it mimics the activity of native apo E in the theca-interstitial cell system. To define the role of members of the LDL receptor superfamily in the apo E peptide-mediated responses, we found that receptor-associated protein prevented the stimulation without altering the inhibition of androstenedione production. The apo E peptide (129-162), which has no LDL receptor-binding activity, did not stimulate androstenedione production. The apo E peptide acetyl-Y(141-155)(2)C did not stimulate androstenedione production when cell surface heparan sulfate proteoglycans were degraded with heparinase. The apo E peptide acetyl-Y(141-155)(2)C bound to heparin, a property of LDL receptor ligands, and in this complex the peptide had no effect on androstenedione production. These observations support the conclusion that apo E-mediated stimulation, but not inhibition, of ovarian theca cell androstenedione production was mediated by members of the LDL receptor superfamily.  相似文献   

6.
We have recently reported an increased clearance of plasma very-low-density lipoprotein (VLDL) after intravenous injection of apolipoprotein (apo) E in Watanabe heritable hyperlipidemic (WHHL) rabbits. In the present study, we have investigated the cellular uptake of VLDL enriched in apo E (VLDL-E) which had been incubated with purified rabbit apo E. VLDL-E was taken up approx. 2-fold more than VLDL in human skin fibroblast, human monocyte-derived macrophage and Hep G2 cell and its degradation was least in macrophage. To characterize the binding of VLDL-E, we performed a binding assay using hepatic endosome isolated from estradiol-treated rats and we observed both increased EDTA-sensitive and -resistant binding of VLDL-E on endosome. Ligand blotting of hepatic endosome demonstrated two major bands of LDL receptor (130 and 260 kDa protein) and a minor band of LDL receptor-related protein (580 kDa protein) with a ligand of VLDL-E. These results suggested that VLDL-E was endocytosed in liver through a similar pathway among three cell types, and enrichment of apo E in VLDL enhanced the uptake of VLDL not only via an EDTA-sensitive binding site (classical LDL receptor) but also via other binding sites including an EDTA-resistant binding site and an LDL receptor-related protein.  相似文献   

7.
Receptor-dependent uptake mechanisms for low-density lipoprotein (LDL) were studied in rabbit liver parenchymal and non-parenchymal cells. Hybridization studies with a cDNA probe revealed that mRNA for the apo (apolipoprotein) B,E receptor was present in endothelial and Kupffer cells as well as in parenchymal cells. By ligand-blotting experiments we showed that apo B,E-receptor protein was present in both parenchymal and non-parenchymal cells. Studies of binding of homologous LDL in cultured rabbit parenchymal cells suggested that about 63% of the specific LDL binding was mediated via the apo B,E receptor. Approx. 47% of the specific LDL binding was dependent on Ca2+, suggesting that specific Ca2+-dependent as well as Ca2+-independent LDL-binding sites exist in liver parenchymal cells. Methylated LDL bound to the parenchymal cells in a saturable manner. Taken together, our results showed that apo B,E receptors are present in rabbit liver endothelial and Kupffer cells as well as in the parenchymal cells, and that an additional saturable binding activity for LDL may exist on rabbit liver parenchymal cells. This binding activity was not inhibited by EGTA or reductive methylation of lysine residues in apo B. LDL degradation in parenchymal cells was mainly mediated via the apo B,E receptor.  相似文献   

8.
To identify the domain of apolipoprotein E (apo-E) involved in binding to low density lipoprotein (LDL) receptors on cultured human fibroblasts, apo-E was cleaved and the fragments were tested for receptor binding activity. Two large thrombolytic peptides (residues 1-191 and 216-299) of normal apo-E3 were combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) and tested for their ability to compete with 125I-LDL for binding to the LDL (apo-B,E) receptors on human fibroblasts. The NH2-terminal two-thirds (residues 1-191) of apo-E3 was as active as intact apo-E3 . DMPC, while the smaller peptide (residues 216-299) was devoid of receptor-binding activity. When apo-E3 was digested with cyanogen bromide (CNBr) and the four largest CNBr fragments were combined with DMPC and tested, only one fragment competed with 125I-LDL for binding to cultured human fibroblasts (CNBr II, residues 126-218). This fragment possessed binding activity similar to that of human LDL. The 125I-labeled CNBr II . DMPC complex also demonstrated high affinity, calcium-dependent saturable binding to solubilized bovine adrenal membranes. The binding of CNBr II . DMPC was inhibited by 1,2-cyclohexanedione modification of arginyl residues or diketene modification of lysyl residues. In addition, the CNBr II had to be combined with DMPC before it demonstrated any receptor-binding activity. Pronase treatment of the membranes abolished the ability of this fragment to bind to the apo-B,E receptors. This same basic region in the center of the molecule has been implicated as the apo-B,E receptor-binding domain not only by this study but also by other studies showing that 1) natural mutants of apo-E that display defective binding have single amino acid substitutions at residues 145, 146, or 158; and 2) the apo-E epitope of the monoclonal antibody 1D7, which inhibits apo-E binding, is centered around residues 139-146.  相似文献   

9.
Human plasma apolipoprotein E (apoE) is a low density lipoprotein (LDL) receptor ligand. It targets cholesterol-rich lipoproteins to LDL receptors on both hepatic and peripheral cells. The region of apoE responsible for its binding to the LDL receptor has been localized to amino acids 140-160. An apoE 141-155 monomeric peptide and a dimeric 141-155 tandem peptide were synthesized and tested for their inhibition of 125I-LDL degradation by human fibroblasts and human monocytic-like cells, THP-1. The monomer had no activity at 250 microM, but the dimer inhibited 125I-LDL degradation by 50% at 5 microM. The inhibition was specific for the LDL receptor because the dimer did not inhibit the degradation of 125I-acetylated LDL by scavenger receptors expressed by phorbol ester-stimulated THP-1 cells. As reported for native apoE, amino acid substitutions of Lys-143----Ala, Leu-144----Pro, and Arg-150----Ala decreased the inhibitory effectiveness of the dimer. Furthermore, a trimer of the 141-155 sequence had a 20-fold greater inhibitory activity than the dimer. Studies with a radioiodinated dimer indicated that some of the inhibitory activity could be a result of the interaction of the dimer with LDL. However, direct binding of the 125I-dimeric peptide to THP-1 cells was observed as well. This binding was time-dependent, linear with increasing cell number, Ca(2+)- but not Mg(2+)-dependent, saturable, inhibited by lipoproteins, and increased by preculture of the cells in lipoprotein-depleted medium. Therefore, a synthetically prepared dimeric repeat of amino acid residues 141-155 of apoE binds the LDL receptor.  相似文献   

10.
Apolipoprotein (apo) E plays a major role in lipid metabolism by mediating cellular uptake of lipoprotein particles through interaction with members of the low density lipoprotein (LDL) receptor family. The primary region of apoE responsible for receptor binding has been limited to a cluster of basic amino acids between residues 134 and 150, located in the fourth helix of the N-terminal domain globular helix bundle structure. To investigate structural and functional requirements of this "receptor binding region" we engineered an apolipoprotein chimera wherein residues 131-151 of human apoE were substituted for residues 146-166 (helix 5) of Manduca sexta apolipophorin III (apoLp-III). Recombinant hybrid apolipoprotein was expressed in Escherichia coli, isolated, and characterized. Hybrid apolipoprotein and apoE3-N-terminal, but not apoLp-III, bound to heparin-Sepharose. Far UV circular dichroism spectroscopy revealed the presence of predominantly alpha-helix secondary structure, and stability studies revealed a urea denaturation midpoint of 1.05 m, similar to wild-type apoLp-III. Hybrid apolipoprotein-induced dimyristoylphosphatidylcholine (DMPC) bilayer vesicle solubilization activity was significantly enhanced compared with either parent protein, consistent with detection of solvent-exposed hydrophobic regions on the protein in fluorescent dye binding experiments. Unlike wild-type apoLp-III.DMPC complexes, disc particles bearing the hybrid apolipoprotein competed with 125ILDL for binding to the LDL receptor on cultured human skin fibroblasts. We conclude that a hybrid apolipoprotein containing a key receptor recognition element of apoE preserves the structural integrity of the parent protein while conferring a new biological activity, illustrating the potential of helix swapping to introduce desirable biological properties into unrelated or engineered apolipoproteins.  相似文献   

11.
A promising strategy to solve the problems of insufficient membrane penetration of drugs and low target specificity is the localization of targeting and uptake-facilitating ligands on the surface of drug-carrier systems. This study investigated the role of a peptide derived from the LDL receptor (LDLr)-binding domain of apolipoprotein E (apoE) in initiating endocytosis in brain capillary endothelial cells. The highly cationic tandem dimer of apoE residues (141-150) was coupled covalently onto poly(ethylene glycol)-derivatized liposomes. Membrane binding and cellular uptake was monitored qualitatively by confocal-laser-scanning microscopy as well as quantitatively using a fluorescence assay. The peptide mediated an efficient, energy-dependent translocation of liposomes across the membrane of brain capillary endothelial cells. Liposomes without surface-located peptides displayed neither membrane accumulation nor cellular uptake. Low peptide affinity to LDLr and internalization of the complex into fibroblasts with up- and down-regulated receptor expression levels, as well as complex translocation into cells incubated with an antibody against the LDLr, pointed to a dominating role of an LDLr-independent transport route. Enzymatic digestion of heparan sulfate proteoglycan (HSPG) with heparinase I and addition of heparin and poly-l-lysin as competitors of HSPG and HSPG ligands, respectively, resulted in a significant loss in liposome internalization. The results suggested that HSPG played a major role in the apoE-peptide-mediated uptake of liposomes into endothelial cells of brain microvessels.  相似文献   

12.
Pham T  Kodvawala A  Hui DY 《Biochemistry》2005,44(20):7577-7582
Apolipoprotein E (apoE) is a 34-kDa lipid-associated protein present in plasma and in the central nervous system. Previous studies have demonstrated that apoE has multiple functions, including the ability to transport lipids, regulate cell homeostasis, and inhibit lipid oxidation. The lipid binding domain of apoE has been localized to the carboxyl-terminal domain, whereas a cluster of basic amino acid residues within the N-terminal domain is responsible for its receptor binding activity. This study was undertaken to identify the domain in apoE responsible for its antioxidant activity. Results showed that apoE inhibits Cu(2+)-induced LDL oxidation by delaying conjugated diene formation in a concentration-dependent manner. Reductive methylation of lysine residues or cyclohexanedione modification of arginine residues in apoE abolished its ability to inhibit LDL oxidation. Additional studies showed that a 22-kDa peptide containing the N-terminal domain of apoE3 was more effective than a similar peptide with the apoE4 sequence in inhibiting Cu(2+)-induced LDL oxidation. In contrast, the 10-kDa peptide that contains the C-terminal domain of apoE was ineffective. Inhibition of Cu(2+)-induced LDL oxidation can also be accomplished with a peptide containing either a single sequence or a tandem repeat sequence of the receptor binding domain (residues 141-155) of apoE. Taken together, these results localized the antioxidant domain of apoE to its receptor binding domain and the basic amino acids in this domain are important for its antioxidant activity.  相似文献   

13.
Apolipoprotein (apo)-B-100 is the ligand that mediates the clearance of low density lipoprotein (LDL) from the circulation by the apoB,E (LDL) receptor pathway. Clearance is mediated by the interaction of a domain enriched in basic amino acid residues on apoB-100 with clusters of acidic residues on the apoB,E (LDL) receptor. A model has been proposed for the LDL receptor binding domain of apoB-100 based on the primary amino acid sequence (Knott, T. J., et al. 1986. Nature. 323: 734-738). Two clusters of basic residues (A: 3147-3157 and B: 3359-3367) are apposed on the surface of the LDL particle by a disulfide bridge between Cys 3167 and 3297. Support for this single domain model has been obtained from the mapping of epitopes for anti-apoB monoclonal antibodies that block the binding of apoB to the LDL receptor. Here we test this model by comparing the nucleotide (from 9623 to 10,442) and amino acid sequence (from 3139 to 3411) of apoB-100 in seven species (human, pig, rabbit, rat, Syrian hamster, mouse, and chicken). Overall, this region is highly conserved. Cluster B maintains a strong net positive charge and is homologous across species in both primary and secondary structure. However, the net positive charge of region A is not conserved across these species, but the region remains strongly hydrophilic. The secondary structure of the region between clusters A and B is preserved, but the disulfide bond is unique to the human sequence. This study suggests that the basic region B is primarily involved in the binding of apoB-100 to the apoB,E (LDL) receptor.  相似文献   

14.
Apo E5(Glu3----Lys) is a naturally occurring apolipoprotein E (apo E) mutant found in patients with hyperlipoproteinemia and atherosclerosis. It has been shown to have a high affinity for low density lipoprotein (LDL) receptors. In this study, mutant apo E5 was produced by Chinese hamster ovary cells by means of an in vitro site-directed mutagenesis technique, and its LDL receptor binding activity was assessed. The apo E5 obtained from gene expression bound more readily to the LDL receptor than did plasma apo E3. The concentrations required for 50% competitive binding of 125I-labeled LDL to the LDL receptors were 58.9 ng/ml for plasma apo E3 and 25.7 ng/ml for the expressed apo E5. The expressed apo E5 displayed 229% normal binding. This result is highly consistent with that obtained with plasma apo E5, which showed 217% normal binding. Although the experimental apo E isoproteins contained more sialic acid than plasma apo E, the extent of sialylation had no effect on the receptor binding of apo E.  相似文献   

15.
Our previous studies showed that very low density lipoproteins, Sf 60-400 (VLDL), from hypertriglyceridemia subjects, but not VLDL from normolipemic subjects, suppress HMG-CoA reductase activity in normal human fibroblasts. To determine if this functional abnormality of hypertriglyceridemic VLDL resulted from differences in uptake of the VLDL by the low density lipoprotein (LDL) receptor pathway, we isolated VLDL subclasses from the d less than 1.006 g/ml fraction of normal and hypertriglyceridemic plasma by flotation through a discontinuous salt gradient for direct and competitive binding studies in cultured human fibroblasts. VLDL from the plasma of subjects with hypertriglyceridemia types 4 and 5 were at least as effective as normal LDL in competing for 125I-labeled LDL binding, uptake, and degradation when compared either on the basis of protein content or on a particle basis. By contrast, normolipemic Sf 60-400 VLDL were ineffective in competing with the degradation of 125I-labeled LDL, and Sf 20-60 VLDL (VLDL3) were less effective in reducing specific 125I-labeled LDL degradation than were LDL, consistent with their effects on HMG-CoA reductase activity. In direct binding studies, radiolabeled VLDL from hypertriglyceridemic but not normolipemic subjects were bound, internalized, and degraded with high affinity and specificity by normal fibroblasts. Uptake and degradation of iodinated hypertriglyceridemic VLDL Sf 100-400 showed a saturable dependence on VLDL concentration. Specific degradation plateaued at approximately 25 micrograms VLDL protein/ml, with a half maximal value at 6 micrograms/ml. The most effective competitor of hypertriglyceridemic VLDL uptake and degradation was hypertriglyceridemic VLDL itself. LDL were effective only at high concentrations. Uptake of normal VLDL by normal cells was a linear rather than saturable function of VLDL concentration. By contrast, cellular uptake of the smaller normal VLDL3 was greater than uptake of larger VLDL and showed saturation dependence. After incubation of normal VLDL with 125I-labeled apoprotein E, reisolated 125I-E-VLDL were as effective as LDL in suppression of HMG-CoA reductase activity, suggesting that apoE is involved in receptor-mediated uptake of large suppressive VLDL. We conclude that 1) hypertriglyceridemic VLDL Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by the high affinity LDL receptor-mediated pathway; 2) by contrast, normal VLDL, Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by nonspecific, nonsaturable routes; and 3) of the normal VLDL subclasses, only the smallest Sf 20-60 fraction is bound and internalized via the LDL pathway.  相似文献   

16.
The catabolism of low-density lipoproteins (LDL), the major cholesterol-carrying lipoproteins in plasma, is mediated in part via a high-affinity uptake pathway in the liver. Non-enzymatic glucosylation of lysine residues of apolipoprotein B, the major protein of LDL, blocks receptor-mediated uptake of LDL by fibroblasts and endothelial cells. We investigated the effect of the degree of glucosylation on the binding, uptake and degradation of radioiodinated LDL by the human hepatoma cell line Hep G2. Human LDL was glucosylated with 250 mM glucose and 30 mM cyanoborohydride at 37 degrees C. Incubations ranging from 3 to 48 h in duration resulted in the formation of 6-27% of glucitol-lysine adducts as demonstrated by coincubation with [14C]glucose. The degree of glucose incorporation corresponded to the extent of inhibition of binding, uptake and degradation of LDL (10-90%). The data are consistent with the view that glucosylation of LDL markedly impairs their catabolism. This phenomenon may be related to the pathophysiology of the premature atherosclerosis observed in diabetes mellitus.  相似文献   

17.
NMR spectroscopy of 13C-labeled human low density lipoprotein (LDL) has been employed to characterize the lysine (Lys) residues in apo B-100. Reductive methylation with [13C]formaldehyde converts up to two-thirds of the Lys to the dimethylamino derivative; this pool of Lys is exposed at the surface of the LDL particle. The [13C]dimethyl-Lys which are visualized exhibit resonances at chemical shifts of 42.8 and 43.2 ppm (pH 7.6) indicating that they exist in two different microenvironments; this is a reflection of the native conformation of apo B associated with lipid, because the labeled, reduced, and alkylated protein gives a single resonance when dissolved in 7 M guanidine hydrochloride. The pH dependences of the Lys chemical shifts indicate that the two types of Lys titrate with different pK values; "active" Lys have a pK of 8.9, while "normal" Lys have a pK of 10.5. About 53 active Lys and 172 normal Lys are exposed on the surface of LDL with the remaining 132 Lys which are present in the human apo B-100 molecule being buried and unavailable for methylation. Addition of paramagnetic ions indicates that the active and normal Lys have different exposures to the aqueous phase; apparently this is a reflection of folding of the apo B molecule. The relative involvement of active and normal Lys in binding of apo B-100 to the LDL receptor on fibroblasts was explored by measuring the decrease in receptor binding as a function of the degree of methylation of the two types of Lys. Upper limits of 21 active and 31 normal Lys in the entire apo B-100 molecule are involved in the binding of LDL to the receptor. It is likely that these Lys are located in domains of apo B which contain clusters of basic amino acid residues and also bind heparin. If the sequence corresponding to apo B-48 (residues 1-2151) which does not bind to the receptor is excluded, then the above limits are halved; an upper limit of 10 active Lys may be particularly involved in receptor binding.  相似文献   

18.
The ability of human postprandial triacylglycerol-rich lipoproteins (TRLs), isolated after meals enriched in saturated fatty acids (SFAs), n-6 PUFAs, and MUFAs, to inhibit the uptake of 125I-labeled LDL by the LDL receptor was investigated in HepG2 cells. Addition of TRLs resulted in a dose-dependent inhibition of heparin-releasable binding, cell-associated radioactivity, and degradation products of 125I-labeled LDL (P < 0.001). SFA-rich Svedberg flotation rate (Sf) 60-400 resulted in significantly greater inhibition of cell-associated radioactivity than PUFA-rich particles (P = 0.016) and total uptake of 125I-labeled LDL compared with PUFA- and MUFA-rich particles (P < 0.02). Normalization of the apolipoprotein (apo)E but not apoC-III content of the TRLs removed the effect of meal fatty acid composition, and addition of an anti-apoE antibody reversed the inhibitory effect of TRLs on the total uptake of 125I-labeled LDL. Real time RT-PCR showed that the SFA-rich Sf 60-400 increased the expression of genes involved in hepatic lipid synthesis (P < 0.05) and decreased the expression of the LDL receptor-related protein 1 compared with MUFAs (P = 0.008). In conclusion, these findings suggest an alternative or additional mechanism whereby acute fat ingestion can influence LDL clearance via competitive apoE-dependent effects of TRL on the LDL receptor.  相似文献   

19.
This study showed that synthetic peptides containing either a single copy or tandem repeat of the receptor binding domain sequence of apolipoprotein (apo) E, or a peptide containing its C-terminal heparin binding domain, apoE-(211-243), were all effective inhibitors of platelet-derived growth factor (PDGF)-stimulated smooth muscle cell proliferation. In contrast, only the peptide containing a tandem repeating unit of the receptor binding domain sequence of apoE, apoE-(141-155)(2), was capable of inhibiting PDGF-directed smooth muscle cell migration. Peptide containing only a single unit of this sequence, apoE-(141-155), or the apoE-(211-243) peptide were ineffective in inhibiting PDGF-directed smooth muscle cell migration. Additional experiments showed that reductively methylated apoE, which is incapable of receptor binding yet retains its heparin binding capability, was equally effective as apoE in inhibiting PDGF-stimulated smooth muscle cell proliferation. However, reductively methylated apoE was unable to inhibit smooth muscle cell migration toward PDGF. Additionally, the receptor binding domain-specific apoE antibody 1D7 also mitigated the anti-migratory properties of apoE on smooth muscle cells. Finally, pretreatment of cells with heparinase failed to abolish apoE inhibition of smooth muscle cell migration. Taken together, these data documented that apoE inhibition of PDGF-stimulated smooth muscle cell proliferation is mediated by its binding to heparan sulfate proteoglycans, while its inhibition of cell migration is mediated through apoE binding to cell surface receptors.  相似文献   

20.
Croy JE  Brandon T  Komives EA 《Biochemistry》2004,43(23):7328-7335
LRP1 is a cell surface receptor responsible for clearing some 30 known ligands. We have previously shown that each of the three complete LDL receptor-homology domains of the LRP1 extracellular domain (sLRPs) binds apoE-enriched beta-VLDL particles. Here we show that two peptides from the N-terminal receptor binding domain of apoE, which are known to elicit a number of different cellular responses, bind to LRP1. Solution binding assays show that the two peptides, apoE(130-149) and apoE(141-155)(2), interact with each of the sLRPs (2, 3, and 4). Each peptide was found to exhibit the same solution binding characteristics as apoE-enriched beta-VLDL particles. Surface plasmon resonance analyses of the sLRP-apoE peptide interaction show that both peptides bind the sLRPs with K(D) values in the 100 nM range, a value similar to the effective concentration required for observation of the cellular responses. Consistent with results from mutagenesis studies of binding of apoE to LDLR, apoE(130-149,Arg142Glu) bound with a K(D) similar to that of the wild-type sequence, while apoE(130-149,Lys143Glu) showed a 10-fold decrease in K(D). Each of the peptides bound heparin, and heparin competed for sLRP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号