首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-12, or cytotoxic lymphocyte maturation factor, is a recently cloned cytokine shown to influence lymphokine-activated killer cells activity in heterogeneous lymphocyte populations, proliferative activity as a costimulus in PBMC/PBL populations and IFN-gamma production in PBL. We have investigated the effects of IL-12 on immunomagnetically highly purified CD56+ lymphocytes, and compared the effects with those of IL-7 and IL-2. Our results show that IL-12 directly generated high lymphokine-activated killer cell activity in CD56+ NK cells, without the need for accessory cells. The IL-12-induced lymphokine-activated killer cell activity reached 50% of what was obtained with IL-2. In contrast, only low proliferative activity was induced by IL-12, as 10% of the IL-2-induced- and approximately 50% of the IL-7-induced proliferative activity was detected with IL-12. The CD56+ cells expressed high levels of IL-2R alpha and 75-kDa TNFR in response to IL-12, comparable to what was registered with IL-2 and IL-7. Furthermore, an extensive up-regulation of the CD56 Ag, to the level obtained with IL-2, was detected in the CD56+ NK cells in the presence of IL-12. Stimulation with IL-7 resulted in a more limited CD56 up-regulation in the CD56+ NK cells. Low concentrations of TNF-alpha were produced in response to both IL-12 and IL-7, with little or no TNF-beta production. Time course of the IL-2-induced TNF production revealed an initial TNF-alpha production, whereas significant levels of TNF-beta were detected after 72 h. The effects of both IL-12 and IL-7 on the CD56+ NK cells were inhibited by an anti-TNF-alpha mAb. Thus, IL-12 can directly influence NK cell activities in purified CD56+ cells, and endogenously produced TNF-alpha is involved in mediating the effects of both IL-12 and IL-7.  相似文献   

2.
The effects of IL-6 and IL-2 on highly purified, human peripheral blood large granular lymphocytes (LGL) were investigated and compared. IL-6 enhanced LGL NK activity in a dose-dependent manner against K562, however IL-2 was a more potent stimulus of LGL NK function. Neither IL-2 nor IL-6 increased LGL cytotoxic potential in a parallel estimation of heteroconjugated antibody (anti-CD16 x anti-nitrophenyl mAb)-dependent cytotoxicity against nitrophenyl-modified YAC. Unlike IL-2, IL-6 did not significantly induce LGL lymphokine-activated killer activity, LGL proliferation, or LGL lymphokine production. In particular, IL-6 did not stimulate detectable LGL IL-2 production or IL-2R modulation, and mAb to the p75 IL-2R had no effect on IL-6 induction of LGL NK activity. Therefore, in the absence of T cells, IL-6 provided an IL-2-independent signal to LGL that resulted in augmentation of their NK activity without stimulating their proliferation or other LGL functions.  相似文献   

3.
Interleukin 1 is a pleuripotent cytokine shown to synergize with IL-2 in the generation of lymphokine-activated killer (LAK) cells, when cultured with human peripheral blood mononuclear cells (PBMC) or peripheral blood lymphocytes (PBL). When IL-1 and low dose IL-2 are added in combination, both LAK cytotoxicity and proliferation are increased in short-term (5-6 day) and long-term (12-14 day) cultures compared with cells activated with IL-2 alone. The purpose of this study was to examine the contribution of tumor necrosis factor (TNF-alpha), lymphotoxin (LT, or TNF-beta) and the TNF receptor in the observed IL-1/IL-2 mediated synergy. Analysis of lymphocyte culture supernatants using the L929 bioassay and by specific ELISAs demonstrated an increased production of both TNF and LT in those cells cultured with IL-1 and IL-2. Utilizing specific neutralizing antisera, our experiments demonstrated the biologic activity of both cytokines, with LT-specific antibodies producing the greatest diminution of IL-1/IL-2 stimulated cell proliferation and cytotoxicity. The addition of IL-1 and IL-2 in combination markedly upregulated TNF-receptor expression (measured by Scatchard analysis) in comparison with cells stimulated with IL-2 alone. Characterization of the TNF-R by flow cytometric analysis revealed increased membrane expression of the 75 kDa, but not the 55 kDa, TNF binding protein as a result of IL-1 costimulation.  相似文献   

4.
5.
IL-4 is a pluripotent lymphokine acting on various cell types. We investigated the role of human IL-4 on the generation of lymphokine-activated killer (LAK) activity. Human IL-4 alone did not induce LAK activity and inhibited IL-2 induction of LAK activity from unstimulated PBMC, peripheral blood null cells, spleen cells, and lymph node cells in a dose-dependent manner. IL-4 also inhibited several phenomena induced by IL-2 such as cell proliferation, augmentation of NK activity, increase of Leu-19+ cells, and expression of IL-2R(p55) on either CD3+ or Leu-19+ cells. IL-4, however, augmented cell proliferation with other T cell mitogens including PHA, Con A, PMA, or allo-MHC Ag with or without IL-2. In contrast to unstimulated cells, IL-4 alone induced marked cell proliferation and LAK activity as well as Leu-19+ cells from in vitro IL-2 preactivated PBMC or null cells, and did not inhibit IL-2 induced cell proliferation, LAK activity, Leu-19+ cells and IL-2R(p55) expression, but rather augmented them with low doses of IL-2. Although IL-4 alone induced LAK activity from peripheral blood of some patients previously given IL-2, IL-4 inhibited in vitro LAK generation with IL-2 from these cells in most cases. Therefore, IL-4 appears to directly inhibit the IL-2 activation pathway via IL-2R(p70) and prevent resting LAK precursors from proliferating and differentiating into final effector cells. However, once cells were sufficiently preactivated by IL-2, IL-4 induced LAK activity and did not inhibit IL-2 activation of these cells. These data suggest an immunoregulatory role of IL-4 on human null cells and T cells.  相似文献   

6.
We have previously shown that interleukin (IL-)10-induced proliferation of the murine mast cell line D36, was dependent upon the activation of PI 3-kinase and p70 S6 kinase. Conversely, we were able to show that this pathway was not involved in the signal transduction pathway mediating IL-10 inhibition of pro-inflammatory cytokine release from monocytes. We have extended these studies to investigate the induction of p75 tumour necrosis factor receptor (TNF-R) shedding, another anti-inflammatory property of IL-10. Using the inhibitors of PI 3-kinase (LY294002 and wortmannin) and an inhibitor of p70 S6 kinase activation (rapamycin), we were able to show that this anti-inflammatory effect of IL-10 was not mediated by the PI 3-kinase/p70 S6 kinase pathway, indicating that another signalling cascade(s) was involved. Further studies also investigated the role of tyrosine kinases in the response to IL-10. Two distinct tyrosine kinase inhibitors, herbimycin and genistein affected the expression of TNF-R in response to IL-10 but, surprisingly, with opposite effects. However, both compounds inhibited the activation of both PI 3-kinase and p70 S6 kinase, with a concomitant inhibition of IL-10-induced proliferation. We observed that whilst tyrosine kinase activity was involved in the regulation of TNF-R expression, IL-10-induced activation of JAK kinases was not sensitive to inhibition by the tyrosine kinase inhibitors. These data suggest that multiple unknown tyrosine kinases are mediating the IL-10-induced signal transduction pathways leading to the regulation of TNF-R expression and IL-10-induced proliferation.  相似文献   

7.
In the present study we provide the first evidence supporting the fact that the Kp43 NK-associated cell-surface dimer may be involved in regulating MHC-unrestricted cytotoxicity. Our results indicated that incubation of IL-2-activated NK cells in a 51Cr-release assay with either the Kp43-specific mAb or its F(ab')2 fragments induced a significant cytolytic activity directed against normal autologous and allogeneic T cell blasts, which are relatively resistant to NK cell-mediated lysis. The cytotoxic effect was not observed in fresh CD3- CD16+ CD56+ Kp43+ lymphocytes and was only substantiated in IL-2-preactivated NK cells. Although stimulation with the Kp43-specific mAb did not significantly change the intracellular Ca2+ concentration, both Ca2+ and Mg2+ were required for the induction of cytotoxicity. The anti-Kp43-mediated activation of cytolysis was inhibited by anti-CD18 and CD11a mAb, whereas it was not significantly altered by either CD11b, CD11c, CD2, or LFA-3-specific mAb, rendering unlikely the participation of the latter. In contrast to these results the Kp43-specific mAb did not enhance the high levels of spontaneous cytotoxicity mediated by IL-2-activated NK cells against a panel of different tumor cell lines. An inhibitory effect mediated by anti-Kp43 mAb on the IL-2-dependent proliferation of NK cells was previously reported and appears, at least partially, secondary to the induction of an autolytic mechanism that is synergistically enhanced by anti-CD16 mAb. Altogether our results point out that interaction of the Kp43 dimer with its specific mAb is capable of inducing cytolytic activity and suggest that the molecule may play an important functional role in lymphokine-activated NK cells.  相似文献   

8.
IFN-beta 2/IL-6 augments the activity of human natural killer cells   总被引:8,自引:0,他引:8  
MHC nonrestricted cytotoxic cells play an important role in the killing of tumor cells in vitro and potentially in vivo. The activity of these cells is regulated by several cytokines such as IL-2 and IFN. In the present study we provide first evidence that IL-6 significantly augments the cytotoxic activity of human NK cells. IL-6 is produced by many different cells and is also known as IFN-beta 2, B cell stimulatory factor 2, hybridoma growth factor, hepatocyte-stimulating factor, and 26 kDa protein. IL-6 stimulates the activity of human CD3- NK cells but not that of CD3+ non-MHC-restricted cytotoxic T lymphocytes. As is the case with IL-2, the IL-6-mediated augmented cytotoxicity was a result of a more efficient lysis, but was not caused by an increased effector to target cell binding. Moreover, the effect of IL-6 on NK cell activity was blocked by a mAb directed against IL-2, and IL-6 itself was found to be a potent inducer of IL-2 production in cultured human PBMC. Thus it may be concluded that IL-6 enhances the cytotoxic activity of NK cells via IL-2. This newly recognized property of IL-6, which is produced by almost any cell, may be of importance in host defense against microbes and malignancies and therefore could contribute to improve the adoptive immunotherapy by using lymphokine-activated killer cells.  相似文献   

9.
Pretreatment of mice with rabbit anti-asialo GM1 removes both natural killer (NK) effector cells and NK cells responsive to interleukin 2 (IL-2). Spleen cells from these mice do possess normal lymphokine-activated killer (LAK) activity. Young mice (less than 3 weeks of age) do not have NK activity and do not possess IL-2-inducible NK effector cells. Similarly to anti-asialo GM1-treated mice, LAK cells can be generated from these mice. While these experiments indicate clear distinctions between a certain level of NK and LAK precursors, the distinctions are not as clear when analyzing mice congenitally deficient in NK cells. Beige mice which lack NK effector cells and IL-2-inducible NK cells also lack the ability to generate LAK cells. The relationships and differences between NK- and LAK-cell precursors and effectors are discussed.  相似文献   

10.
Summary We developed a monoclonal antibody (mAb) 211, which recognizes the precursors in peripheral blood of lymphokine-activated killer cells (LAK) induced by recombinant interleukin-2 (rIL-2). In conjunction with complement mAb 211 also eliminates natural killer cells (NK) and a majority of the cytotoxic T lymphocytes. B cells and monocytes do not express the 211 antigen. Since mAb 211 recognized such a large percentage of peripheral blood lymphocytes we examined which 211+ subpopulation was the predominant precursor of rIL-2-induced LAK cells using two-color fluoresence-activated cell sorting (fluorescein-conjugated 211 mAb plus phycoerythrin-CD11b). This method identified the 211+/ CD11b+ population as the predominant phenotype of the rIL-2-induced LAK precursor. In addition, we directly compared the phenotype of the LAK precursor induced by delectinated T-cell growth factor (TCGF) to that induced by rIL-2. The 211-depleted population, which was devoid of NK cells and LAK precursors (inducible by rIL-2), was capable of generating LAK activity when TCGF was used as the source of lymphokine. LAK cells induced by TCGF from the 211-depleted population lysed a fresh sarcoma and an NK-resistant cultured melanoma tumor target but not the Daudi cell line, which was lysed by rIL-2-induced LAK cells. Lymphoid subpopulations, depleted using NKH1a mAb, behaved similarly, generating high levels of lysis against the two solid tumor targets when cultured with TCGF but not with rIL-2. CD 3-depleted populations showed enrichment for LAK precursors using either rIL-2 or TCGF. These results indicate that while rIL-2-induced LAK precursors cannot be separated from cells with NK activity, TCGF-induced LAK cells can be generated from populations of peripheral blood mononuclear cells without NK activity.  相似文献   

11.
The effect of transforming growth factor-beta 1 (TGF-beta) on activation-induced CD8+ T cell cytotoxicity and gene expression was investigated. TGF-beta was demonstrated to inhibit pore-forming protein (PFP) mRNA expression and total benzoyloxycarbonyl-L-lysine thiobenzyl ester esterase activity in CD8+ T cells cultured with IL-2 and OKT3 mAb for 6 to 18 days. Consistently, in the absence or presence of TGF-beta, the PFP mRNA expression and lymphokine-activated killer (LAK) activity of CD8+ T cells were closely correlated. The inhibitory effects of TGF-beta on both CD8+ T cell PFP mRNA expression and LAK activity were reversible by removal of TGF-beta from the culture. Expression of lymphokines, adhesion/recognition molecules, and activated p55 IL-2R, previously implicated in the lytic mechanism of cytotoxic lymphocytes, either was not detectable or did not correlate with TGF-beta inhibition of LAK activity. In addition, independently of effector/target cell binding, the lectin- or heteroconjugated antibody-dependent cellular cytotoxicity of IL-2/OKT3 mAb-activated CD8+ T cells was inhibited by preculture with TGF-beta. TGF-beta also inhibited the rapid activation-induced expression of PFP mRNA and cytotoxic potential in resting T cells, thereby indicating that the effect of TGF-beta was independent of T cell proliferation. TGF-beta inhibition of CD8+ T cell PFP mRNA expression and cytotoxic potential was TGF-beta dose dependent; however, a variety of activation stimuli (including IL-2, IL-6, and OKT3 mAb) were all similarly inhibited by TGF-beta. Therefore, TGF-beta may be an important general regulator of CD8+ T cell cytotoxic function, in particular by suppressing expression of PFP, a major cytolytic protein implicated in the lytic function of cytotoxic lymphocytes.  相似文献   

12.
Interleukin 2 (IL-2) stimulated the differentiation of human peripheral blood leukocytes into lymphokine-activated killer cells, as well as DNA synthesis of human T lymphocytes. Both effects of IL-2 could be inhibited by prostaglandin E2, a potent stimulator of adenylate cyclase; however, the inhibitory effect of prostaglandin E2 could be overcome by increased concentrations of IL-2. The opposite effects of IL-2 and prostaglandin E2 were paralleled by their respective abilities to inhibit and stimulate cAMP production in intact cells. Other agents, which inhibit adenylate cyclase directly (somatostatin, beta-endorphin, UK 14.3041) or indirectly by activation of protein kinase C (phenylephrine), could stimulate both differentiation and proliferation. None of these agents alone or in combination were as effective as maximal concentrations of IL-2. However, all agents potentiated differentiation and proliferation induced by submaximal and maximal concentrations of IL-2. Additionally, combinations of agents which stimulated protein kinase C with those that inhibited adenylate cyclase were additive in the potentiation of IL-2-induced differentiation. Neither inhibition nor potentiation of IL-2-induced lymphokine-activated killer cell differentiation was accompanied by changes in Tac expression or gamma-interferon production. The data indicate that the stimulation of lymphokine-activated killer cell differentiation and lymphocyte proliferation in human cells share a common initial biochemical signal. Although the inhibition of adenylate cyclase is not sufficient to maximally stimulate either process and cannot bypass the requirement for IL-2, modulation of this enzyme complex, positively or negatively, can regulate the ultimate physiologic response to IL-2.  相似文献   

13.
mAb have been derived against NK cell-sensitive target cells in an effort to identify the target cell structure involved in Ag recognition by NK cells. Several mAb were selected for further study based on their preliminary target cell binding characteristics. Flow cytometry demonstrated that each of these mAb bound to a series of NK-sensitive target cells of various origins (e.g., K562 and Molt-4) while having little or no reactivity with several NK-resistant target cell lines (e.g., SB and Daudi). Functional studies revealed that two of the mAb were able to inhibit the lysis of NK-sensitive K562 target cells by freshly isolated, endogenous NK cells in a dose-dependent fashion. Further, these mAb also could inhibit the killing of K562 target cells by both activated NK cells and cultured lymphokine-activated killer cells, as well as the cytolysis of other NK-sensitive target cells by each of these effector cell populations. Control experiments with another mAb which bound to the target cells but did not inhibit lysis implied that the effects of these mAb on NK cell function was not the result of steric hindrance. Single cell conjugate assays demonstrated that the mAb inhibited NK cell lysis via the inhibition of binding (recognition). Biochemical analysis of this target cell structure revealed that it was a molecule of approximately 42 kDa which may exist as a homodimer in its native state. Thus, it appears that the mAbs identify an unique Ag on the surface of NK cell-sensitive target cells which is involved in NK cell Ag recognition.  相似文献   

14.
To investigate natural killer (NK) and lymphokine-activated killer (LAK) cell functions from 10 healthy dogs and 29 dogs with a variety of spontaneous neoplasms, large granular lymphocytes (LGLs) from blood samples were separated by a 58.5% Percoll density gradient. LGLs were stimulated with a low dose of recombinant human interleukin 2 (rhIL-2) for 7 days. Cytotoxicity of effector cells against the susceptible CTAC cell line was measured before and after stimulation. Compared with those before stimulation, the percentage of LGLs after stimulation with rhIL-2 was found to be significantly increased (P<0.01) in both dogs with tumors and controls. However, the increase was significantly higher in control animals, indicating a defect in proliferation ability of NK cells in canine tumor patients. After stimulation with rhIL-2, lymphokine-activated killer (LAK) cell activity in dogs with tumors was significantly lower (P<0.01) when compared with controls. Reduced cytotoxicity of rhIL-2–activated NK cells in dogs with tumors seems to be attributable to the presence of a diminished proliferative capacity of NK cells and a decreased ability of LAK cells to lyse target cells. Further knowledge of the precise function of IL-2–activated NK cells in dogs with tumors may help to optimize new and therapeutically beneficial treatment strategies in canine and human cancer patients. Our findings suggest that the dog could also serve as a relevant large animal model for cancer immunotherapy with IL-2.  相似文献   

15.
Peritumoral injection of human IL-2-activated natural killer cells into nude mice consistently induced regression of xenografts of human squamous cell carcinoma of the head and neck (SCCHN). To determine the mechanisms responsible for the tumor regression, the lymphoid cells infiltrating the tumor stroma at 24 to 48 h after adoptive immunotherapy were examined by in situ hybridization for the presence of mRNA for cytokines or IL-2R. Numerous lymphoid cells expressing cytokine or IL-2R genes were observed in these tumors, whereas the cultured IL-2-activated NK cells used for therapy were negative. Thus, it appeared that the transferred NK cells became activated in situ after coming into proximity with the tumor cells. To analyze this phenomenon, fresh or cultured human NK cells were coincubated in vitro with irradiated human SCCHN cell line, PCI-1, with or without the presence of IL-2. Expression of mRNA for IL-2R, perforin, and various cytokines was observed within 5 h. Contact with the tumor cells stimulated NK cells to proliferate, secrete IFN-gamma, TNF-alpha, and soluble IL-2R, up-regulate cell surface expression of IL2R p55 and p75 as well as CD16 Ag, and mediate higher levels of antitumor activity in 51Cr-release assays. In addition, supernatants of in vitro-activated NK cells significantly inhibited proliferation of SCCHN cell lines. By examining the effects of neutralizing mAb to various cytokines, this inhibitory activity was shown to be partially attributable to IFN-gamma. To determine the possible in vivo role of soluble factors produced by activated human NK cells, the supernatants (0.2 ml) or rIFN-gamma (10(5) U) were injected perilesionally each day for 2 wk into 3-day SCCHN established in immunosuppressed nude mice. These treatments caused significant (p less than 0.02) inhibition of tumor growth. The results of our studies indicate that human NK cells are strongly activated by SCCHN cells and that the consequent release of cytokines contribute to the regression of SCCHN growing in nude mice.  相似文献   

16.
TNF-related apoptosis-inducing ligand (TRAIL), a new member of TNF family, induces apoptotic cell death of various tumor cells. We recently showed that TRAIL mediates perforin- and Fas ligand (FasL)-independent cytotoxic activity of human CD4+ T cell clones. In the present study, we investigated the expression and function of TRAIL on murine lymphocytes by using newly generated anti-murine TRAIL mAbs. Although freshly isolated T, B, or NK cells did not express a detectable level of TRAIL on their surface, a remarkable level of TRAIL expression was induced preferentially on CD3- NK1.1+ NK cells after stimulation with IL-2 or IL-15. In contrast, TRAIL expression was not induced by IL-18, whereas it efficiently potentiated lymphokine-activated killer activity of NK cells. In addition to perforin inactivation and neutralization of FasL by anti-FasL mAb, neutralization of TRAIL by anti-TRAIL mAb was needed for the complete inhibition of IL-2- or IL-15-activated NK cell cytotoxicity against mouse fibrosarcoma L929 target cells, which were susceptible to both FasL and TRAIL. These results indicated preferential expression of TRAIL on IL-2- or IL-15-activated NK cells and its potential involvement in lymphokine-activated killer activity.  相似文献   

17.
 NKR-P1 has been identified as a triggering structure selectively expressed on rat natural killer (NK) cells and adherent lymphokine-activated killer (A-LAK) cells. In vivo treatment with anti-NKR-P1 monoclonal antibody (mAb 3.2.3) was shown to induce complete inhibition of NK cytotoxicity and elimination of LAK cell precursors in Lewis and Fisher rat strains. We investigated the effects of mAb 3.2.3 in a colon tumor model in BDIX rats. Inoculation of animals with mAb 3.2.3 even at very high doses induced a strong but incomplete inhibition of NK cytotoxicity in nylon-wool-non-adherent spleen and peripheral blood cells. Generation of adherent A-LAK cells from their spleen precursors was also strongly but not fully inhibited. We also investigated the effect of treatment with mAb 3.2.3 on the tumorigenicity of the NK-sensitive REGb cell line. When subcutaneously inoculated in syngeneic animals, REGb cells induce tumors that first grow for 2 weeks, then spontaneously regress and disappear. In contrast with previous results using anti-asialoGM1, no significant difference in tumor growth was observed between rats treated with mAb 3.2.3 and control animals, even with a long-term treatment. In vitro, mAb 3.2.3 exhibited the same incomplete efficiency. Nylon-wool-non-adherent spleen cells treated with mAb 3.2.3 plus complement were completely free of 3.2.3bright cells, but retained a substantial NK activity and generated LAK cells after culture with IL-2. After an overnight incubation in standard medium of 3.2.3-depleted spleen cells, 3.2.3bright cells were partially recovered and the NK cytotoxic activity, as well as the generation of LAK cells, was significantly enhanced. These results suggest that a strong expression of NKR-P1 is not required for BDIX mononuclear cells to exhibit NK function and generate LAK cells under IL-2 activation. Received: 11 July 1995 / Accepted: 16 November 1995  相似文献   

18.
The coculture of rat bone marrow cells with recombinant interleukin-2 induced the generation of cells mediating natural killer (NK) activity and subsequent lymphokine-activated killer (LAK) activity depending upon the dose of IL-2 and time of culture. NK activity was detected as early as 4 to 5 days after the addition of IL-2 and could be evoked with as little as 5 to 50 U/ml. The induced NK cells had large granular lymphocyte (LGL) morphology and expressed 0X8 and asialo GM1 surface markers but did not express 0X19 or W3/25 markers. LAK activity was detected only after 5 days of culture, and required above 100 U/ml IL-2. Cells mediating LAK activity also expressed 0X8 and asialo GM1 but not 0X19. The generation of detectable NK and subsequent LAK activity was due to induction of early progenitor cells and not contaminating mature LGL/NK cells within the bone marrow population since of removal of such mature NK cells with L-leucine methyl ester (L-LME) did not affect the subsequent generation of either activity. Moreover, the removal of actively dividing cells as well as mature NK cells from the bone marrow by treatment with 5-fluorouracil (5-FU) in vivo enriched the remaining bone marrow population for both NK and LAK progenitor cells. The phenotype of the L-LME- and 5-FU-resistant NK and LAK progenitor cells within populations of bone marrow was determined by antibody plus complement depletion analysis. Although treatment of normal bone marrow with anti-asialo GM1 + C reduced the induction of NK and LAK activity in 5-day cultures, treatment of 5-FU marrow with anti-asialo GM1 + C did not affect either activity. Treatment with a pan-T cell antibody + C did not affect the development of NK or LAK activity under any conditions. Thus, the 5-FU-resistant NK/LAK progenitors were asialo GM1 negative but became asialo GM1+ after induction by IL-2. Finally, evidence that bone marrow-derived LAK cells were generated directly from the IL-2-induced NK cells was obtained by treating the IL-2-induced LGL/NK cells with L-LME.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The role of IL-4 in proliferation and differentiation of human NK cells was studied using newly established sublines of an IL-4-dependent NK cell clone (IL4d-NK cells) and an IL-2-dependent NK cell clone (IL2d-NK cells) derived from a parental conditioned medium-dependent NK cell clone (CM-NK cells). IL-4 induced the higher proliferation of CM-NK cells, but abolished their NK activity and decreased CD16 and CD56 Ag expression. In contrast, IL-2 induced the higher NK activity and increased CD16 and CD56 Ag expression. Addition of anti-IL-4 antibody to the culture of CM-NK cells with CM inhibited the proliferation, but slightly increased NK activity, and largely increased CD56 Ag expression. Addition of anti-IL-2 antibody to the culture of CM-NK cells with CM inhibited both proliferation and cytotoxicity. Proliferation of IL4d-NK cells, which is totally dependent on rIL-4, is greater than that of IL2d-NK cells, which was greater than parental CM-NK cells. Morphologically, IL4d-NK cells are small and round, whereas IL2d-NK cells are large and elongated. Anti-IL-4 antibody inhibited proliferation of IL4d-NK but not IL2d-NK cells, whereas anti-IL-2 antibody inhibited that of IL2d-NK but not IL4d-NK cells. IL-2 was not detected in the supernatant from IL4d-NK cells, nor was IL-2-mRNA expressed in IL4d-NK cells. In contrast, IFN-gamma production and protein expression in IL4d- and IL2d-NK cells were detected. NK cell activation markers (CD16 and CD56) were expressed on IL2d-NK cells but not IL4d-NK cells. IL4d-NK cells were not cytotoxic to any tumor cells tested, whereas IL2d-NK cells displayed potent NK activity and lymphokine-activated killer activity. IL4d-NK cells failed to bind K562 tumor cells, whereas one-third of the IL2d-NK cells did. IL4d-NK cells responded to rIL-2, proliferated, and differentiated into cytotoxic NK cells, whereas IL2d-NK cells failed to respond to rIL-4 and died. These results raise a possibility that IL4d-NK cells or IL2d-NK cells primarily represent the immunologic properties of immature or activated types of human NK cells, respectively. Our results provide the first evidence of the capability of IL-4 to support continuous proliferation of a lymphocyte clone with immature NK cell characteristics and to stimulate IFN-gamma production in the clone. IL-4 is suggested as a potential growth factor for certain types of human NK cell progenitors.  相似文献   

20.
Human rIL-4 was studied for its capacity to induce lymphokine-activated killer (LAK) cell activity. In contrast to IL-2, IL-4 was not able to induce LAK cell activity in cell cultures derived from peripheral blood. IL-4 added simultaneously with IL-2 to such cultures suppressed IL-2-induced LAK cell activity measured against Daudi and the melanoma cell line MEWO in a dose-dependent way. IL-4 also inhibited the induction of LAK cell activity in CD2+, CD3-, CD4-, CD8- cells, suggesting that IL-4 acts directly on LAK precursor cells. IL-4 added 24 h after the addition of IL-2 failed to inhibit the generation of LAK cell activity. Cytotoxic activity of various types of NK cell clones was not affected after incubation in IL-4 for 3 days, indicating that IL-4 does not affect the activity of already committed killer cells. No significant differences were observed in the percentages of Tac+, NKH-1+ and CD16+ cells after culturing PBL in IL-2, IL-4 or combinations of IL-2 and IL-4 for 3 days. IL-4 also inhibited the activation of non-specific cytotoxic activity in MLC, as measured against K-562 and MEWO cells. In contrast, the Ag-specific CTL activity against the stimulator cells was augmented by IL-4. Collectively, these data indicate that IL-4 prevents the activation of LAK cell precursors by IL-2, but does not inhibit the generation of Ag-specific CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号