首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Seto MH  Liu HL  Zajchowski DA  Whitlow M 《Proteins》1999,35(2):235-249
The B30.2-like domain occurs in some members of a diverse and growing family of proteins containing zinc-binding B-box motifs, whose functions include regulation of cell growth and differentiation. The B30.2-like domain is also found in proteins without the zinc-binding motifs, such as butyrophilin (a transmembrane glycoprotein) and stonustoxin (a secreted cytolytic toxin). Currently, the function for the B30.2-like domain is not clear and the structure of a protein containing this domain has not been solved. The secondary structure prediction methods indicate that the B30.2-like domain consists of fifteen or fewer beta-strands. Fold recognition methods identified different structural topologies for the B30.2-like domains. Secondary structure prediction, deletion and lack of local sequence identity at the C-terminal region for certain members of the family, and packing of known core structures suggest that a structure containing two beta domains is the most probable of these folds. The most C-terminal sequence motif predicted to be a beta-strand in all B30.2-like domains is a potential subdomain boundary based on the sequence-structure alignments. Models of the B30.2-like domains were built based on immunoglobulin-like folds identified by the fold recognition methods to evaluate the possibility of the B30.2 domain adopting known folds and infer putative functional sites. The SPRY domain has been identified as a subdomain within the B30.2-like domain. If the B30.2-like domain is a subclass of the SPRY domain family, then this analysis would suggest that the SPRY domains are members of the immunoglobulin superfamily.  相似文献   

2.
A novel ligand-binding domain, named the 'ACT domain', was recently identified by a PSI-BLAST search. The archetypical ACT domain is the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase (3PGDH), which folds with a ferredoxin-like betaalphabetabetaalphabeta topology. A pair of ACT domains form an eight-stranded antiparallel sheet with two molecules of the allosteric inhibitor serine bound in the interface. The ACT domain is found in a variety of contexts and is proposed to be a conserved regulatory ligand binding fold. Rat phenylalanine hydroxylase has a regulatory domain with a similar fold, but different ligand-binding mode. Putative ACT domains in some proteins of unknown structure (e.g. acetohydroxyacid synthase regulatory subunits) may also fold like the 3PGDH regulatory domain. The regulatory domain of threonine deaminase, although not a member of the ACT sequence family, is similar in structure to the paired 3PGDH regulatory domains. Repeats of ACT-like domains can create nonequivalent ligand-binding sites with the potential for complex regulatory patterns. The structures and mechanisms of such systems have only begun to be examined.  相似文献   

3.
Proteins employ a wide variety of folds to perform their biological functions. How are these folds first acquired? An important step toward answering this is to obtain an estimate of the overall prevalence of sequences adopting functional folds. Since tertiary structure is needed for a typical enzyme active site to form, one way to obtain this estimate is to measure the prevalence of sequences supporting a working active site. Although the immense number of sequence combinations makes wholly random sampling unfeasible, two key simplifications may provide a solution. First, given the importance of hydrophobic interactions to protein folding, it seems likely that the sample space can be restricted to sequences carrying the hydropathic signature of a known fold. Second, because folds are stabilized by the cooperative action of many local interactions distributed throughout the structure, the overall problem of fold stabilization may be viewed reasonably as a collection of coupled local problems. This enables the difficulty of the whole problem to be assessed by assessing the difficulty of several smaller problems. Using these simplifications, the difficulty of specifying a working beta-lactamase domain is assessed here. An alignment of homologous domain sequences is used to deduce the pattern of hydropathic constraints along chains that form the domain fold. Starting with a weakly functional sequence carrying this signature, clusters of ten side-chains within the fold are replaced randomly, within the boundaries of the signature, and tested for function. The prevalence of low-level function in four such experiments indicates that roughly one in 10(64) signature-consistent sequences forms a working domain. Combined with the estimated prevalence of plausible hydropathic patterns (for any fold) and of relevant folds for particular functions, this implies the overall prevalence of sequences performing a specific function by any domain-sized fold may be as low as 1 in 10(77), adding to the body of evidence that functional folds require highly extraordinary sequences.  相似文献   

4.
Protein structure prediction remains an unsolved problem. Since prediction of the native structure seems very difficult, one usually tries to predict the correct fold of a protein. Here the "fold" is defined by the approximate backbone structure of the protein. However, physicochemical factors that determine the correct fold are not well understood. It has recently been reported that molecular mechanics energy functions combined with effective solvent terms can discriminate the native structures from misfolded ones. Using such a physicochemical energy function, we studied the factors necessary for discrimination of correct and incorrect folds. We first selected correct and incorrect folds by a conventional threading method. Then, all-atom models of those folds were constructed by simply minimizing the atomic overlaps. The constructed correct model representing the native fold has almost the same backbone structure as the native structure but differs in side-chain packing. Finally, the energy values of the constructed models were compared with that of the experimentally determined native structure. The correct model as well as the native structure showed lower energy than misfolded models. However, a large energy gap was found between the native structure and the correct model. By decomposing the energy values into their components, it was found that solvent effects such as the hydrophobic interaction or solvent shielding and the Born energy stabilized the correct model rather than the native structure. The large energetic stabilization of the native structure was attained by specific side-chain packing. The stabilization by solvent effects is small compared to that by side-chain packing. Therefore, it is suggested that in order to confidently predict the correct fold of a protein, it is also necessary to predict correct side-chain packing.  相似文献   

5.
One still cannot predict the 3D fold of a protein from its amino acid sequence, mainly because of errors in the energy estimates underlying the prediction. However, a recently developed theory [1] shows that having a set of homologs (i.e., the chains with equal, in despite of numerous mutations, 3D folds) one can average the potential of each interaction over the homologs and thus predict the common 3D fold of protein family even when a correct fold prediction for an individual sequence is impossible because the energies are known only approximately. This theoretical conclusion has been verified by simulation of the energy spectra of simplified models of protein chains [2], and the further investigation of these simplified models shows that their true "native" fold can be found by folding of the chain where each interaction potential is averaged over the homologs. In conclusion, the applicability of the "homolog-averaging" approach is tested by recognition of real protein 3D structures. Both the gapless threading of sequences onto the known protein folds [3] and the more practically important gapped threading (which allows to consider not only the known 3D structures, but the more or less similar to them folds as well) shows a significant increase in selectivity of the native chain fold recognition.  相似文献   

6.
Protein structure determination by NMR has predominantly relied on simulated annealing‐based conformational search for a converged fold using primarily distance constraints, including constraints derived from nuclear Overhauser effects, paramagnetic relaxation enhancement, and cysteine crosslinkings. Although there is no guarantee that the converged fold represents the global minimum of the conformational space, it is generally accepted that good convergence is synonymous to the global minimum. Here, we show such a criterion breaks down in the presence of large numbers of ambiguous constraints from NMR experiments on homo‐oligomeric protein complexes. A systematic evaluation of the conformational solutions that satisfy the NMR constraints of a trimeric membrane protein, DAGK, reveals 9 distinct folds, including the reported NMR and crystal structures. This result highlights the fundamental limitation of global fold determination for homo‐oligomeric proteins using ambiguous distance constraints and provides a systematic solution for exhaustive enumeration of all satisfying solutions. Proteins 2015; 83:651–661. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The beta-lactamases are involved in bacterial resistance to penicillin and related compounds. Members of the metallo-enzyme class are now found in many pathogenic bacteria and are thus becoming of major clinical importance. The structures of the Zn-beta-lactamase from Fluoribacter gormanii (FEZ-1) in the native and in the complex form are reported here. FEZ-1 is a monomeric enzyme, which possesses two zinc-binding sites. These structures are discussed in comparison with those of the tetrameric L1 enzyme produced by Stenotrophomonas maltophilia. From this analysis, amino acids involved in the oligomerization of L1 are clearly identified. Despite the similarity in fold, the active site of FEZ-1 was found to be significantly different. Two residues, which were previously implicated in function, are not present in L1 or in FEZ-1. The broad-spectrum substrate profile of Zn-beta-lactamases arises from the rather wide active-site cleft, where various beta-lactam compounds can be accommodated.  相似文献   

8.
Tao Z  Gao P  Hoffman DW  Liu HW 《Biochemistry》2008,47(21):5804-5813
Poly(ADP-ribose) polymerase-1 (PARP-1) is a multimodular nuclear protein that participates in many fundamental cellular activities. Stimulated by binding to nicked DNA, PARP-1 catalyzes poly(ADP-ribosyl)ation of the acceptor proteins using NAD (+) as a substrate. In this work, NMR methods were used to determine the solution structure of human PARP-1 protein. Domain C was found to contain a zinc-binding motif of three antiparallel beta-strands with four conserved cysteines positioned to coordinate the metal ligand, in addition to a helical region. The zinc-binding motif is structurally reminiscent of the "zinc-ribbon" fold, but with a novel spacing between the conserved cysteines (CX2CX12CX 9C). Domain C alone does not appear to bind to DNA. Interestingly, domain C is essential for PARP-1 activity, since a mixture containing nicked DNA and the PARP-1 ABDEF domains has only basal enzymatic activity, while the addition of domain C to the mixture initiated NAD (+) hydrolysis and the formation of poly(ADP-ribose), as detected by an NMR-based assay and autoradiography. The structural model for domain C in solution provides an important framework for further studies aimed at improving our understanding of how the various domains within the complex PARP-1 enzyme play their respective roles in regulating the enzyme activity when cells are under conditions of genotoxic stress.  相似文献   

9.
The zinc finger HIT domain is a sequence motif found in many proteins, including thyroid hormone receptor interacting protein 3 (TRIP-3), which is possibly involved in maturity-onset diabetes of the young (MODY). Novel zinc finger motifs are suggested to play important roles in gene regulation and chromatin remodeling. Here, we determined the high-resolution solution structure of the zinc finger HIT domain in ZNHIT2 (protein FON) from Homo sapiens, by an NMR method based on 567 upper distance limits derived from NOE intensities measured in three-dimensional NOESY spectra. The structure yielded a backbone RMSD to the mean coordinates of 0.19 A for the structured residues 12-48. The fold consists of two consecutive antiparallel beta-sheets and two short C-terminal helices packed against the second beta-sheet, and binds two zinc ions. Both zinc ions are coordinated tetrahedrally via a CCCC-CCHC motif to the ligand residues of the zf-HIT domain in an interleaved manner. The tertiary structure of the zinc finger HIT domain closely resembles the folds of the B-box, RING finger, and PHD domains with a cross-brace zinc coordination mode, but is distinct from them. The unique three-dimensional structure of the zinc finger HIT domain revealed a novel zinc-binding fold, as a new member of the treble clef domain family. On the basis of the structural data, we discuss the possible functional roles of the zinc finger HIT domain.  相似文献   

10.
Bartlett GJ  Taylor WR 《Proteins》2008,71(2):950-959
Distinguishing native from non-native folds remains a challenging problem for protein structure prediction. We describe a method, SCA-distance scoring, based on results from statistical coupling analysis which discriminates between native and non-native folds produced by a de novo protein structure prediction method for four out of five test proteins. The method is particularly good at discriminating non-native folds which are close in RMSD to the true fold but contain a change in an internal structural element. SCA-distance scoring is a useful addition to the tools available for distinguishing native from non-native folds in protein structure prediction.  相似文献   

11.
It has been demonstrated that the sigma 3 protein of reovirus harbors a zinc-binding domain in its amino-terminal portion. A putative zinc finger in the CCHH form is located in this domain and was considered to be a good candidate for the zinc-binding motif. We performed site-directed mutagenesis to substitute amino acids in this region and demonstrated that many of these mutants, although expressed in COS cells, were unstable compared with the wild-type protein. Further analysis revealed that zinc-binding capability, as measured by retention on a zinc chelate affinity adsorbent, correlates with stability. These studies also allowed us to identify a CCHC box as the most probable zinc-binding motif.  相似文献   

12.
13.
Serpins fold to a metastable native state and are susceptible to undergoing spontaneous conformational change to more stable conformers, such as the latent form. We investigated conformational change in tengpin, an unusual prokaryotic serpin from the extremophile Thermoanaerobacter tengcongensis. In addition to the serpin domain, tengpin contains a functionally uncharacterized 56-amino-acid amino-terminal region. Deletion of this domain creates a variant--tengpinDelta51--which folds past the native state and readily adopts the latent conformation. Analysis of crystal structures together with mutagenesis studies show that the N terminus of tengpin protects a hydrophobic patch in the serpin domain and functions to trap tengpin in its native metastable state. A 13-amino-acid peptide derived from the N terminus is able to mimick the role of the N terminus in stabilizing the native state of tengpinDelta51. Therefore, the function of the N terminus in tengpin resembles protein cofactors that prevent mammalian serpins from spontaneously adopting the latent conformation.  相似文献   

14.
Molecular dissection of a LIM domain.   总被引:14,自引:3,他引:11       下载免费PDF全文
LIM domains are novel sequence elements that are found in more than 60 gene products, many of which function as key regulators of developmental pathways. The LIM domain, characterized by the cysteine-rich consensus CX2CX16-23HX2CX2CX2CX16-21 CX2-3(C/H/ D), is a specific mental-binding structure that consists of two distinct zinc-binding subdomains. We and others have recently demonstrated that the LIM domain mediates protein-protein interactions. However, the sequences that define the protein-binding specificity of the LIM domain had not yet been identified. Because structural studies have revealed that the C-terminal zinc-binding module of a LIM domain displays a tertiary fold compatible with nucleic acid binding, it was of interest to determine whether the specific protein-binding activity of a LIM domain could be ascribed to one of its two zinc-binding subdomains. To address this question, we have analyzed the protein-binding capacity of a model LIM peptide, called zLIM1, that is derived from the cytoskeletal protein zyxin. These studies demonstrate that the protein-binding function of zLIM1 can be mapped to sequences contained within its N-terminal zinc-binding module. The C-terminal zinc-binding module of zLIM1 may thus remain accessible to additional interactive partners. Our results raise the possibility that the two structural subdomains of a LIM domain are capable of performing distinct biochemical functions.  相似文献   

15.
The β-prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, β-prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the β-prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a β-prism I fold lectin, griffithsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of β-prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion. It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the β-prism II fold, is related to the role of plant lectins in defence.  相似文献   

16.
Knowledge-based potentials can be used to decide whether an amino acid sequence is likely to fold into a prescribed native protein structure. We use this idea to survey the sequence-structure relations in protein space. In particular, we test the following two propositions which were found to be important for efficient evolution: the sequences folding into a particular native fold form extensive neutral networks that percolate through sequence space. The neutral networks of any two native folds approach each other to within a few point mutations. Computer simulations using two very different potential functions, M. Sippl's PROSA pair potential and a neural network based potential, are used to verify these claims.  相似文献   

17.
Obg comprises a unique family of high-molecular mass GTPases conserved from bacteria to eukaryotes. Bacterial Obg is essential for cellular growth, sporulation, and differentiation. Here, we report the crystal structure of the full-length form of Obg from Thermus thermophilus HB8 at 2.07 A resolution, in the nucleotide-free state. It reveals a three-domain arrangement, composed of the N-terminal domain, the guanine nucleotide-binding domain (G domain), and the C-terminal domain. The N-terminal and G domains have the Obg fold and the Ras-like fold, respectively. These global folds are similar to those of the recently published structure of the C-terminal domain-truncated form of Obg from Bacillus subtilis. On the other hand, the C-terminal domain of Obg was found to have a novel fold (the OCT fold). A comparison of the T.thermophilus and B.subtilis nucleotide-free Obg structures revealed significant conformational changes in the switch-I and switch-II regions of the G domain. Notably, the N-terminal domain is rotated drastically, by almost 180 degrees, around the G domain axis. In the T.thermophilus Obg crystal, the nucleotide-binding site of the G domain interacts with the C-terminal domain of the adjacent molecule. These data suggest a possible domain rearrangement of Obg, and a potential role of the C-terminal domain in the regulation of the nucleotide-binding state.  相似文献   

18.

Background

The function of proteins is a direct consequence of their three-dimensional structure. The structural classification of proteins describes the ways of folding patterns all proteins could adopt. Although, the protein folds were described in many ways the functional properties of individual folds were not studied.

Results

We have analyzed two β-barrel folds generally adopted by small proteins to be looking similar but have different topology. On the basis of the topology they could be divided into two different folds named SH3-fold and OB-fold. There was no sequence homology between any of the proteins considered. The sequence diversity and loop variability was found to be important for various binding functions.

Conclusions

The function of Oligonucleotide/oligosaccharide-binding (OB) fold proteins was restricted to either DNA/RNA binding or sugar binding whereas the Src homology 3 (SH3) domain like proteins bind to a variety of ligands through loop modulations. A question was raised whether the evolution of these two folds was through DNA shuffling.  相似文献   

19.
Mh1 domain of Smad is a degraded homing endonuclease   总被引:2,自引:0,他引:2  
  相似文献   

20.
The Chfr mitotic checkpoint protein is frequently inactivated in human cancer. We determined the three-dimensional structure of its FHA domain in its native form and in complex with tungstate, an analog of phosphate. The structures revealed a beta sandwich fold similar to the previously determined folds of the Rad53 N- and C-terminal FHA domains, except that the Rad53 domains were monomeric, whereas the Chfr FHA domain crystallized as a segment-swapped dimer. The ability of the Chfr FHA domain to recognize tungstate suggests that it shares the ability with other FHA domains to bind phosphoproteins. Nevertheless, differences in the sequence and structure of the Chfr and Rad53 FHA domains suggest that FHA domains can be divided into families with distinct binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号