首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma LH concentration is believed to be reasonably steady in normal male rats. We found that LH is released in a regular pulsatile fashion. The overall mean concentration of plasma LH in normal male rats was 46.6 +/- 4.4 (mean +/- SEM) ng/ml. The normal male rats showed periodic LH pulses: the mean pulse amplitude was 144.4 +/- 25.5 ng/ml and the inter-peak interval was 22.5 +/- 2.0 min. Each pulse lasted 9.7 +/- 0.8 min. When LH-RH (1 microgram/kg) was injected as a bolus, the peak concentration was attained in 10-30 min reaching a peak concentration of 279.4 +/- 39.6 ng/ml. Distinct pulsatile bursts of plasma LH were discernible during the period of elevated plasma LH concentration. When a higher dose of LH-RH (5 micrograms/kg) was administered, the LH concentration slowly increased to a peak concentration of 400.2 +/- 38.7 ng/ml in 20-40 min. The pulsatile nature of the LH concentration was recognizable with distinct bursts. We have observed that: (a) normal male rats release LH in a pulsatile fashion with an approximate 20-min inter-peak interval; (b) mean LH pulses last less than 10 min, and (c) the LH pulses are visible even with elevated LH and LH-RH concentrations in the general circulation.  相似文献   

2.
The involvement of serotonin in mediating the inhibitory effect of immobilization stress on LH secretion in castrated male rats was examined by employing p-chlorophenylalanine (PCPA, 320 mg/kg, ip), an inhibitor of serotonin synthesis, and 5,6-dihydroxytryptamine (5,6-DHT, 50 micrograms, icv), a drug toxic to the indoleaminergic system. Immobilization stress suppressed pulsatile LH release and decreased mean plasma LH levels. Pretreatment with PCPA or 5,6-DHT apparently eliminated the inhibitory effect of immobilization stress on LH release. These results suggest the possible involvement of a serotoninergic mechanism in mediating the suppression of LH release induced by immobilization stress in castrated male rats.  相似文献   

3.
The effect of food deprivation on the pulsatile release of LH was examined in the normal cycling and the ovariectomized (OVX) adult female rat. In the cycling animals, there were significant decreases in the mean plasma LH levels as well as the frequency and amplitude of the LH pulse 48 h after the onset of food deprivation. On the other hand, food deprivation for up to 72 h did not cause any changes in pulsatile LH release in the OVX animals. No difference in the changes in body weight and blood glucose concentration were found between the cycling and OVX rats throughout the period of food deprivation for up to 96 h. These findings suggest that ovarian factors play an important role in the early manifestation of the effect of food deprivation on pulsatile LH release and that metabolic changes as expressed by decreases in body weight and blood glucose level per se were not the direct causes in the decrease of LH release during the period of food deprivation.  相似文献   

4.
High doses of atrazine (ATR), administered for 4 days, suppress luteinizing hormone (LH) release and increase adrenal hormones levels. Considering the known inhibitory effects of adrenal hormones on the hypothalamo-pituitary-gonadal axis, we investigated the possible role the adrenal gland has in mediating ATR inhibition of LH release. To determine the extant and duration of adrenal activation, ovariectomized Wistar rats were given a single dose of ATR (0, 50, or 200 mg/kg), and corticosterone (CORT) levels were assayed at multiple time points posttreatment. CORT levels were increased within 20 min and remained elevated over 12 h postgavage in 200-mg/kg animals. To determine the effects of adrenalectomy on ATR inhibition of the LH surge and pulsatile LH release, adrenalectomized (ADX) or sham-operated ovariectomized rats were treated for 4 days with ATR (0, 10, 100, or 200 mg/kg), and an LH surge was induced with hormone priming. In the afternoon following the last dose of ATR, blood was sampled hourly for 9 h. Another cohort of ovariectomized rats was examined for pulsatile patterns of LH secretion after ATR (0, 50, or 200 mg/kg) and sampled every 5 min for 3 h. ADX had no effect on ATR inhibition of the LH surge but prevented the ATR disruption of pulsatile LH release. These data indicate that ATR selectively affects the LH pulse generator through alterations in adrenal hormone secretion. Adrenal activation does not play a role in ATR's suppression of the LH surge, and therefore ATR may work centrally to alter the preovulatory LH surge in female rats.  相似文献   

5.
Ten intact and hypophysial stalk-transected (HST), prepuberal Yorkshire gilts, 112–160 days old, were subjected to a pulsatile infusion regimen of luteinizing hormone-releasing hormone (LHRH) to investigate secretion profiles of luteinizing hormone (LH) and ovarian function. A catheter was implanted in a common carotid artery and connected to an infusion pump and recycling timer, whereas an indwelling external jugular catheter allowed collection of sequential blood samples for radioimmunoassay of LH and progesterone. In a dose response study, intracarotid injection of 5 μg LHRH induced peak LH release (5.9 ± 0.65 ng/ml; mean ± SE) within 20 min, which was greater (P < 0.001) than during the preinjection period (0.7 ± 0.65 ng/ml). After HST, 5 μg LHRH elicited LH release in only one of three prepuberal gilts. Four intact animals were infused with 5 μg LHRH (in 0.1% gel phosphate buffer saline, PBS) in 0.5-ml pulses (0.1 ml/min) at 1.5-h intervals continuously during 12 days. Daily blood samples were obtained at 20-min intervals 1 h before and 5, 10, 20, 40, 60 and 80 min after one LHRH infusion. Plasma LH release occurred in response to pulsatile LHRH infusion during the 12-day period; circulating LH during 60 min before onset of LHRH infusion was 0.7 ± 0.16 ng/ml compared with 1.3 ± 0.16 ng/ml during 60 min after onset of infusion (P < 0.001). Only one of four intact gilts ovulated, however, in response to LHRH infusion. This animal was 159 days old, and successive estrous cycles did not recur after LHRH infusion was discontinued. Puberal estrus occurred at 252 ± 7 days in these gilts and was confirmed by plasma progesterone levels. These results indicate that intracarotid infusion of 5 μg LHRH elicits LH release in the intact prepuberal gilt, but this dosage is insufficient to cause a consistent response after HST.  相似文献   

6.
An increase in episodic release of LH is putatively the initial event leading to the onset of postpartum ovarian cyclicity in ewes. This experiment was conducted to determine the relationship between hypothalamic release of GnRH and onset of pulsatile secretion of LH during postpartum anestrus. Control ewes (n = 7) were monitored during the postpartum period to determine when normal estrous cycles resumed. In controls, the mean interval from parturition to the first postpartum estrus as indicated by a rise in serum progesterone greater than 1 ng/mg was 25.8 +/- 0.6 days. Additional ewes (n = 4-5) at 3, 7, 14, and 21 days postpartum (+/- 1 day) were surgically fitted with cannula for collection of hypophyseal-portal blood. Hypophyseal-portal and jugular blood samples were collected over a 6- to 7-h period at 10-min intervals. The number of GnRH pulses/6 h increased (p less than 0.05) from Day 3 postpartum (2.2 +/- 0.5) to Days 7 and 14 (3.6 +/- 0.2 and 3.9 +/- 0.4, respectively). A further increase (p less than 0.05) in GnRH pulse frequency was observed at Day 21 postpartum (6.4 +/- 0.4 pulses/6 h). Changes in pulsatile LH release paralleled changes observed in pulsatile GnRH release over Days 3, 7, 14, and 21 postpartum (0.83 +/- 0.3, 2.8 +/- 0.4, 2.9 +/- 0.6, and 4.0 +/- 1.1 pulses/6 h, respectively). GnRH pulse amplitude was higher at Day 21 than at Days 3, 7, or 14 postpartum. These findings suggest that an increase in the frequency of GnRH release promotes the onset of pulsatile LH release during postpartum anestrus in ewes.  相似文献   

7.
To assess the role of testosterone (T) in regulating the minute-to-minute release of pulsatile luteinizing hormone (LH) secretion in the adult male rat, we investigated the negative feedback of acute increases in plasma T concentrations on pulsatile LH secretion in acutely castrated male rats. At the time of castration, we implanted T-filled Silastic capsules, s.c., which maintained plasma T concentrations at approximately 1.8 ng/ml and suppressed LH pulses. On the next day, the capsules were removed; blood sampling (every 6 min) was started 8 h after implant removal, thereby allowing LH pulses to be reinitiated. Immediately following a control bleeding interval of 2 h, either T or vehicle alone was infused s.c., and blood sampling continued for another 4 h. In animals receiving vehicle alone, LH pulse frequency and mean LH levels increased over the 6 h bleeding period. The administration of 200 ng T/min caused a rapid rise in plasma T concentrations of about 4 ng/ml ("physiological") and prevented the increase in pulse frequency that occurred in the control group; it did not, however, reduce pulse frequency over the 4 h infusion period. When T was infused at the rate of 400 ng/ml, plasma T concentrations rose to approximately 18 ng/ml ("supraphysiological") and LH pulse frequency was significantly reduced, but not completely inhibited, during the last 2 h of the infusion. The pulse amplitude of luteinizing hormone did not change significantly in any of the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effects of hypothalamic lesions designed to destroy either the anterior median eminence (ME) or the posterior and mid-ME on pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were determined in castrated male rats. In sham-operated animals, mean plasma FSH concentrations rose to peak at 10 min after the onset of sampling, whereas LH declined to a nadir during this time. In the final sample at 120 min, the mean FSH concentrations peaked as LH decreased to its minimal value. In rats with anterior ME lesions, there was suppression of LH pulses with continuing FSH pulses in 12 of 21 rats. On the other hand, in animals with posterior to mid-ME lesions, 3 out of 21 rats had elimination of FSH pulses, whereas LH pulses were maintained. Fifteen of 42 operated rats had complete ME lesions, and pulses of both hormones were abolished. The remaining 12 rats had partial ME lesions that produced a partial block of the release of both hormones. The results support the concept of separate hypothalamic control of FSH and LH release with the axons of the putative FSH-releasing factor (FSHRF) neuronal system terminating primarily in the mid- to caudal ME, whereas those of the LHRH neuronal system terminate in the anterior and mid-median eminence. We hypothesize that pulses of FSH alone are mediated by release of the FSHRF into the hypophyseal portal vessels, whereas those of LH alone are mediated by LHRH. Pulses of both gonadotropins simultaneously may be mediated by pulses of both releasing hormones simultaneously. Alternatively, relatively large pulses of LHRH alone may account for simultaneous pulses of both gonadotropins since LHRH has intrinsic FSH-releasing activity.  相似文献   

9.
A Ottlecz  S M McCann 《Life sciences》1988,43(25):2077-2085
Prostacyclin (PGI2) or its stable metabolite, 6-keto-PGF1 alpha (1-5 micrograms) in 2.5 microliter 0.05 M phosphate buffer (pH 7.4), was injected into the third ventricle (3 V) of ovariectomized (OVX), freely moving rats. Control animals received 2.5 microliter of buffer. In the initial experiments a control blood sample was taken and then the PGI2 was injected and frequent samples taken thereafter. With this protocol injection of 2 micrograms of PGI2 produced a significant decrease in mean plasma LH only at 60 min after its injection (p less than .05), while the higher dose (5 micrograms) decreased plasma LH concentrations at 30 and 60 min (p less than .01 and p less than .001, respectively). In subsequent experiments, blood was removed from indwelling external jugular vein cannulae every 5-6 min during 2 hours and plasma LH and PRL levels were determined by radioimmunoassay. LH pulses were monitored and several parameters of LH pulsation were calculated during the hour before and after injection of phosphate buffer, PGI2 or 6-keto-PGF1 alpha. Intraventricular injection of phosphate buffer failed to modify the characteristic pulsatile release of LH and did not alter plasma PRL levels. The amplitude of LH pulses was significantly reduced by PGI2 and the inhibitory effect was dose-related. Even a dose of 1 microgram produced a significant reduction in pulse height and the response was graded with maximal reduction occurring with the 5 microgram dose which essentially abolished the LH pulses. Following the microinjection of 6-keto-PGF1 alpha, no significant changes were observed in plasma LH values and the pulses of the hormone. Five micrograms PGI2 considerably elevated plasma PRL values during the 20-25 min following its 3V injection, whereas the same dose of 6-keto-PGF1 alpha produced only a very slight stimulatory effect. Since PGI2 had no effect to alter LH release by cultured pituitary cells in vitro, it is concluded that PGI2 can act on structures near the 3V to inhibit pulsatile release of LHRH.  相似文献   

10.
Tonic gonadotropin secretion was monitored at 20 min intervals for a total of 9 hours in 3 female volunteers during the mid-luteal phase of an ovulatory cycle. This control period was followed by repeated LH-RH stimulation (12 micrograms LH-RH as i.v. bolus once every hour for another 5 hours). During the control period spontaneous albeit low-frequent pulsatile secretion was observed for LH (a pulse occurring once every 3-8 hours) but not for FSH. While intermittent exogenous LH-RH stimulation was being performed at circhoral LH-RH pulse frequency pulsatile gonadotropin release was established at synchronous episodicity and systemic gonadotropin levels consecutively increased. These data provide indirect evidence that the pituitary gland is not rendered refractory to LH-RH by luteal progesterone secretion but readily responds to LH-RH stimuli even when these simulate a follicular phase LH-RH pulse frequency. Thus, it is concluded that spontaneous pulsatile LH release at low frequency during the luteal phase of the cycle reflects low frequent LH-RH discharges from the hypothalamus. Underlying mechanisms are discussed.  相似文献   

11.
Prolactin (PRL) and luteinizing hormone (LH) secretions are very closely-related. To further understand these mechanisms, the pulsatile secretion pattern of both hormones in experimentally-induced hyperprolactinemia has been studied in adult female rats. Hyperprolactinemia was induced by the transplanting of two pituitary glands. Nine days after the transplant operation, rats were bled (75 or 100 microliters/7 min for 3 h). Serum samples were analyzed for prolactin and LH values by RIA. Hyperprolactinemia modifies pulsatile PRL secretion by increasing the absolute amplitude and duration of the peaks together with a decrease in their frequency. Also, the mean values of the hormone during the whole studied period were increased. Hyperprolactinemia was followed by an increase in the mean values of LH and in the absolute amplitude of the peaks. All these results suggest that hyperprolactinemia induced by pituitary grafting in adult female rats, is followed by a significant change in prolactin and LH pulsatility, which may explain, to some extent, the effects of hyperprolactinemia on reproduction.  相似文献   

12.
Experiments were conducted to examine the pulsatile nature of biologically active luteinizing hormone (LH) and progesterone secretion during the luteal phase of the menstrual cycle in rhesus monkeys. As the luteal phase progressed, the pulse frequency of LH release decreased dramatically from a high of one pulse every 90 min during the early luteal phase to a low of one pulse every 7-8 h during the late luteal phase. As the pulse frequency decreased, there was a corresponding increase in pulse amplitude. During the early luteal phase, progesterone secretion was not episodic and there were increments in LH that were not associated with elevations in progesterone. However, during the mid-late luteal phase, progesterone was secreted in a pulsatile fashion. During the midluteal phase (Days 6-7 post-LH surge), 67% of the LH pulses were associated with progesterone pulses, and by the late luteal phase (Days 10-11 post-LH surge), every LH pulse was accompanied by a dramatic and sustained release of progesterone. During the late luteal phase, when the LH profile was characterized by low-frequency, high-amplitude pulses, progesterone levels often rose from less than 1 ng/ml to greater than 9 ng/ml and returned to baseline within a 3-h period. Thus, a single daily progesterone determination is unlikely to be an accurate indicator of luteal function. These results suggest that the changing pattern of mean LH concentrations during the luteal phase occurs as a result of changes in frequency and amplitude of LH release. These changes in the pulsatile pattern of LH secretion appear to have profound effects on secretion of progesterone by the corpus luteum, especially during the mid-late luteal phase when the patterns of LH concentrations are correlated with those of progesterone.  相似文献   

13.
Luteinizing hormone levels were measured in blood samples collected at 5 minute (min) intervals for 3 hours (hr) during the a.m. and p.m. of 3 consecutive days from long-term ovariectomized cows. Levels of LH fluctuated in a pulsatile manner in all animals. During the pulses, LH levels increased rapidly (2.5 to 6.0 ng/ml). Following the rapid increase, a more gradual exponential decline was observed. The interval between pulses was consistent both within and between days of blood sample collection within cows. From the results we suggest that each cow may have an inherent consistent rhythmic pattern of LH release in the absence of an ovarian source of hormones.  相似文献   

14.
Prior experiments have shown that the adipocyte hormone leptin can advance puberty in mice. We hypothesized that it would also stimulate gonadotrophin secretion in adults. Since the secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH) is drastically affected by estrogen, we hypothesized that leptin might have different actions dependent on the dose of estrogen. Consequently in these experiments, we tested the effect of injection of leptin into the third cerebral ventricle of ovariectomized animals injected with either the oil diluent, 10 microg or 50 microg of estradiol benzoate 72 hr prior to the experiment. The animals were ovariectomized 3-4 weeks prior to implantation of a cannula into the third ventricle 1 week before the experiments. The day after implantation of an external jugular catheter, blood samples (0. 3 ml) were collected just before and every 10 min for 2 hr after 3V injection of 5 microl of diluent or 10 microg of leptin. Both doses of estradiol benzoate equally decreased plasma LH concentrations and pulse amplitude, but there was a graded decrease in pulse frequency. In contrast, only the 50-microg dose of estradiol benzoate significantly decreased mean plasma FSH concentrations without significantly changing other parameters of FSH release. The number of LH pulses alone and pulses of both hormones together decreased as the dose of estrogen was increased, whereas the number of pulses of FSH alone significantly increased with the higher dose of estradiol benzoate, demonstrating differential control of LH and FSH secretion by estrogen, consistent with alterations in release of luteinizing hormone releasing hormone (LHRH) and the putative FSH-releasing factor (FSHRF), respectively. The effects of intraventricularly injected leptin were drastically altered by increasing doses of estradiol benzoate. There was no significant effect of intraventricular injection of leptin (10 microg) on the various parameters of either FSH or LH secretion in ovariectomized, oil-injected rats, whereas in those injected with 10 microg of estradiol benzoate there was an increase in the first hr in mean plasma concentration, area under the curve, pulse amplitude, and maximum increase of LH above the starting value (Deltamax) on comparison with the results in the diluent-injected animals in which there was no alteration of these parameters during the 2 hr following injection. The pattern of FSH release was opposite to that of LH and had a different time-course. In the diluent-injected animals, probably because of the stress of injection and frequent blood sampling, there was an initial significant decline in plasma FSH at 20 min after injection, followed by a progressive increase with a significant elevation above the control values at 110 and 120 min. In the leptin-injected animals, mean plasma FSH was nearly constant during the entire experiment, coupled with a significant decrease below values in diluent-injected rats, beginning at 30 min after injection and progressing to a maximal difference at 120 min. Area under the curve, pulse amplitude, and Deltamax of FSH was also decreased in the second hour compared to values in diluent-injected rats. In contrast to the stimulatory effects of intraventricular injection of leptin on pulsatile LH release manifest during the first hour after injection, there was a diametrically opposite, delayed significant decrease in pulsatile FSH release. This differential effect of leptin on FSH and LH release was consistent with differential effects of leptin on LHRH and FSHRF release. Finally, the higher dose of E2 (50 microg) suppressed release of both FSH and LH, but there was little effect of leptin under these conditions, the only effect being a slight (P < 0.04) increase in pulse amplitude of LH in this group of rats. The results indicate that the central effects of leptin on gonadotropin release are strongly dependent on plasma estradiol levels. These effects are consistent w  相似文献   

15.
The influence of GnRH pulse frequency on LH subunit mRNA concentrations was examined in castrate, testosterone-replaced male rats. GnRH pulses (25 ng/pulse) or saline to controls, were given via a carotid cannula at intervals of 7.5-240 min for 48 h. alpha and LH beta mRNA concentrations were 109 +/- 23 and 30 +/- 5 pg cDNA bound/100 micrograms pituitary DNA, respectively, in saline controls. GnRH pulse intervals of 15, 30, and 60 min resulted in elevated alpha and LH beta mRNAs (P less than 0.01) and maximum responses (4-fold, alpha; 3-fold, LH beta) were seen after the 30-min pulses. Acute LH release to the last GnRH pulse was seen after the 15-, 30-, and 60-min pulse intervals. In contrast, LH subunit mRNAs were not increased and acute LH release was markedly impaired after the rapid (7.5 min) or slower (120 and 240 min) pulse intervals. Equalization of total GnRH dose/48 h using the 7.5- and 240-min intervals did not increase LH subunit mRNAs to levels produced by the optimal 30-min interval. These data indicate that the frequency of the pulsatile GnRH stimulus regulates expression of alpha and LH beta mRNAs in male rats. Further, GnRH pulse frequencies that increase subunit mRNA concentrations are associated with continuing LH responsiveness to GnRH.  相似文献   

16.
The effect of intraventricular administration of β-endorphin on pulsatile LH release in castrated conscious rats was studied. The administration of 1 μg of β-endorphin into the lateral ventricle inhibited pulsatile discharge of LH secretion. Intravenous administration of naloxone blocked the suppressive effect of β-endorphin on LH release. These results suggest a possible role of β-endorphin, in addition to Met5-enkephalin, in the control of LH release in male rats.  相似文献   

17.
Current evidence suggests that endogenous opioid peptides (EOPs) tonically inhibit secretion of luteinizing hormone (LH) by modulating the release of gonadotropin-releasing hormone (GnRH). Because of their apparent inhibitory actions, EOPs have been assumed to alter both pulse frequency and amplitude of LH in the rat; and it has been hypothesized that EOP pathways mediate the negative feedback actions of steroids on secretion of GnRH. In order to better delineate the role of EOPs in regulating secretion of LH in the male rat, we assessed the effects of a sustained blockade of opiate receptors by naloxone on pulsatile LH release in four groups: intact male rats, acutely castrated male rats implanted for 20 h with a 30-mm capsule made from Silastic and filled with testosterone, acutely castrated male rats implanted for 20 h with an osmotic minipump dispensing 10 mg morphine/24 h, and male rats castrated approximately 20 h before treatment with naloxone. We hypothesized that if EOPs tonically inhibited pulsatile LH secretion, a sustained blockade of opiate receptors should result in a sustained increase in LH release. We found that treatment with naloxone resulted in an immediate but transient increase in LH levels in intact males compared to controls treated with saline. Even though mean levels of LH increased from 0.15 +/- 0.04 to a high of 0.57 +/- 0.14 ng/ml, no significant difference was observed between the groups in either frequency or amplitude of LH pulses across the 4-h treatment period. The transient increase in LH did result in a 3- to 4-fold elevation in levels of plasma testosterone over baseline. This increase in testosterone appeared to correspond with the waning of the LH response to naloxone. The LH response to naloxone was eliminated in acutely castrated rats implanted with testosterone. Likewise, acutely castrated rats treated with morphine also failed to respond to naloxone with an increase in LH. These observations suggest that chronic morphine and chronic testosterone may act through the same mechanism to modulate secretion of LH, or once shut down, the GnRH pulse-generating system becomes refractory to stimulation by naloxone. In acutely castrated male rats, levels of LH were significantly increased above baseline throughout the period of naloxone treatment; this finding supports the hypothesis that the acute elevation in testosterone acting through mechanism independent of opioid is responsible for the transient response of LH to naloxone in the intact rat.  相似文献   

18.
To determine whether luteinizing hormone (LH) secretion during the first estrous cycle postpartum is characterized by pulsatile release, circulating LH concentrations were measured in 8 postpartum mares, 4 of which had been treated with 150 mg progesterone and 10 mg estradiol daily for 20 days after foaling to delay ovulation. Blood samples were collected every 15 min for 8 h on 4 occasions: 3 times during the follicular phase (Days 2-4, 5-7, and 8-11 after either foaling or end of steroid treatment), and once during the luteal phase (Days 5-8 after ovulation). Ovulation occurred in 4 mares 13.2 +/- 0.6 days postpartum and in 3 of 4 mares 12.0 +/- 1.1 days post-treatment. Before ovulation, low-amplitude LH pulses (approximately 1 ng/ml) were observed in 3 mares; such LH pulses occurred irregularly (1-2/8 h) and were unrelated to mean circulating LH levels, which gradually increased from less than 1 ng/ml at foaling or end of steroid treatment to maximum levels (12.3 ng/ml) within 48 h after ovulation. In contrast, 1-3 high-amplitude LH pulses (3.7 +/- 0.7 ng/ml) were observed in 6 of 7 mares during an 8-h period of the luteal phase. The results suggest that in postpartum mares LH release is pulsatile during the luteal phase of the estrous cycle, whereas before ovulation LH pulses cannot be readily identified.  相似文献   

19.
This study examined the effects of two specific neurotransmitter receptor antagonists, naloxone (NAL; mu-opioid) and yohimbine (YOH; alpha(2)-adrenergic), on pulsatile luteinizing hormone (LH) release during the luteal phase (Day 10; Day 0 = estrus) of beef cows. Treatments were saline i.m. (C; n = 4); 1mg/kg NAL i.m. followed 3 h later by two 0.5 mg/kg injections spaced 2.5 h apart (N; n = 4); 0.2 mg/kg YOH i.v. (Y; n = 3); or combined N and Y regimens, with Y preceding N by 30 min (NY; n = 4). Blood samples were collected for 8 h before (Period I) and after (Period II) initiation of treatment. Respiration rates of Y cows were similar to C cows during Period II. However, respiration rates of N and NY animals increased 70% within 30 min of the first NAL injection. Acute LH release was not observed in response to either NAL or YOH. Pulsatile LH secretion was unchanged in N, Y and NY cows during Period II when compared with Period I. In contrast, basal and pulsatile LH secretion was inhibited in C cows during Period II. The inhibition of LH secretion in C animals following NAL indicate that the cows were under stress during Period II. Thus, these data suggest that the inhibition of LH release in stressed animals can be overcome by pharmacologic attenuation of inhibitory (N) or accentuation of stimulatory (Y) signals to LHRH-containing neurons.  相似文献   

20.
The endogenous opioid peptides (EOPs) may inhibit the rate of hypothalamic gonadotropin-releasing hormone (GnRH) release and hence the frequency of pulsatile luteinizing hormone (LH) release, particularly in the luteal phase of the menstrual cycle. Our objectives were to compare the effects of an opiate antagonist, naloxone (NAL), on the patterns of LH, estradiol-17 beta (E2), and progesterone (P4) secretion during the follicular and luteal phases of the macaque menstrual cycle. Plasma levels of E2, P4, and bioactive LH were measured in serial, 15-min blood samples during 8-hr infusions of NAL (2 mg/hr) or saline, either on Days 5 or 6 of the follicular phase (FN and FS, n = 5 and 4, respectively) or on Days 8, 9, or 10 of the luteal phase (LN and LS, n = 5 each) of a menstrual cycle. The pulsatile parameters of each hormone were determined by PULSAR analysis and the correspondence of steroid pulses with those of LH were analyzed for each cycle stage in each animal. As expected, LH mean levels and pulse frequencies in LS monkeys were only about one-third of those values in FS animals. NAL had no effects on pulsatile LH, E2, or P4 release during the follicular phase. In contrast, luteal phase NAL infusions increased both LH mean levels and pulse frequencies to values which were indistinguishable from those in FS animals. LH pulse amplitudes did not differ among the four groups. Mean levels and pulse frequencies of P4 secretion in LS monkeys were about 4- and 14-fold greater than those values in FS animals. Mean levels and pulse amplitudes of P4 release in LN animals were greater than those values in all other groups. LH and E2 pulses were not closely correlated in follicular phase animals, and this pulse association was not altered by NAL. In FS monkeys, LH and P4 pulses were not correlated; however, NAL increased this LH-p4 pulse correspondence. LH and P4 pulses were closely correlated in luteal phase animals and this association was not affected by NAL. Our data suggest that the EOPs inhibit the frequency of pulsatile LH secretion in the presence of luteal phase levels of P4. During the midfollicular phase when LH pulses occur every 60 to 90 min, the opioid antagonist NAL alters neither the pulsatile pattern of LH release nor E2 secretion, but NAL may directly affect P4-secreting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号