首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

2.
罹患头颈部肿瘤的患者在接受放射治疗时往往会发生放射性唾液腺损伤。射线的照射使患者唾液腺结构破坏、功能减退,患者的生活质量严重下降。对于放射性唾液腺损伤,临床上尚无有效的治疗方式。骨髓来源细胞(bone marrow-derived cells,BMDCs)最早用于治疗血液系统疾病。随着对BMDCs认识的逐渐深入,BMDCs的应用领域日益广泛。近些年来,一些动物实验的研究结果表明,利用BMDCs治疗放射性唾液腺损伤能够有效地保护腺体内各种实质细胞,促进腺组织再生,恢复唾液腺功能。本文主要对利用BMDCs治疗放射性唾液腺损伤的治疗方式、治疗效果及其主要的治疗机制进行综述,并对该领域今后的研究方向进行了展望。  相似文献   

3.
 The stylet bundle of the sweet potato whitefly, Bemesia tabaci, consists of paired mandibles and maxillae. The latter interlock to form the food and salivary canals. Its salivary system consists of paired primary and accessary glands in the thorax. Primary and accessory gland ducts on each side of the nerve cord fuse to form lateral ducts that course anteroventrally to the midline and continue in parallel down the hypopharynx to eventually fuse to form the single afferent duct of the salivary pump. Saliva exiting the pump via the efferent duct enters the salivary canal of the maxillae. Food from the maxillary food canal passes from the antecibarium to the postcibarium or sucking pump and, per os, to the pharynx and esophagus of the foregut. The esophagus extends from the head to the base of the abdomen where it and the anterior midgut intimately mingle with the anterior hindgut to form a filter chamber. The midgut then proceeds dorsocaudally before looping anteroventrally to join the hindgut. The latter gives off two fingerlike Malpighian tubules before entering the filter chamber, whence it proceeds dorsocaudally to the anus within the vasiform orifice. Where possible, the morphology of Bemisia is discussed in relation to plant virus transmission and the morphologies of more thoroughly studied homopteran vectors such as aphids and leafhoppers. Accepted: 9 July 1996  相似文献   

4.
After a globiferous pedicellaria is lost from a sea urchin, a new appendage of the same kind is usually regenerated in the weeks that follow. During the latter part of regeneration, head glands and stalk glands, both of epidermal origin, develop from undifferentiated cells. Head gland cells begin morphological differentiation in the epidermis and then delaminate into the underlying dermis. In the formation of the stalk gland, by contrast, undifferentiated cells delaminate from the epidermis and then begin morphological differentiation in the dermis. During late regeneration, cells in the head and stalk glands are characterized by extensive rough endoplasmic reticulum distended with intracisternal material; moreover, the Golgi complex is closely associated with some of the large cytoplasmic vacuoles. The accumulating secretions of the two glands differ both in fine structure and in site of storage. Head gland secretions are stored intracellularly in the cytoplasmic vacuoles, while stalk gland secretions leave the gland cells in an apocrine fashion and are stored in an extracellular lumen. After regeneration, the mature cells of the head glands and stalk glands contain relatively little distended endoplasmic reticulum, although a Golgi complex is still present. Presumably, mature gland cells, in comparison to regenerating gland cells, produce relatively little secretion; instead, the glandular products elaborated during regeneration are probably stored in the mature glands with little augmentation or turnover.  相似文献   

5.
The salivary glands of 2 leafhoppers, Circulifer tenellus and Dalbulus maidis (Homoptera : Cicadellidae) were examined by light and electron microscopy. Centrally located and occupying both the head and thorax, the salivary glands consist of 2 paired parts, the accessory glands and the principal glands. In C. tenellus and D. maidis, the accessory glands are large, multicelled lobes that lie anterior to the principal gland. They join the principal glands near the common salivary duct-gland junction via a thinner tubular duct. The principal glands of both species consist of large binucleate cells that differ in cytology and arrangement. These cells are easily distinguished by unique staining characteristics. Circulifer tenellus salivary gland cells are arranged in 2 lobes, the anterior lobe, made up of 3 concentric rings around the salivary duct and the posterior lobe, arranged in a loose pyramid extending above the foregut. Dalbulus maidis glands are similarly organized around the salivary duct.  相似文献   

6.
Pheromone glands were discovered in the prothorax of male Hylotrupes bajulus (L.) (Coleoptera : Cerambycidae). These exocrine glands were investigated by SEM and light microscopy. Almost the entire prothorax is internally lined with a glandular matrix composed of numerous heap-like complex glands. Each gland is divided into several subunits (“pore field units”), which in turn are composed of a varying number of glandular units. The glandular unit comprises a distal voluminous glandular cell, a medial (intercalary) canal cell I, and a minute canal cell II near the cuticle. The spindle-like, basally constricted receiving canal of the gland cell leads into the long, non-porous conducting canal, which, by a single cuticle canal, opens in an external pore field, an aggregate of orifices of other such cuticle canals. In varying numbers, these randomly arranged pore fields are located in superficial pits that are distributed over nearly the entire prothorax. The structure of these male sex pheromone glands is discussed in comparison with other known glands in species of Coleoptera characterized by multicellular aggregations and by pore plates.  相似文献   

7.
The principal salivary gland of the planthopper, Peregrinus maidis (Ashmead) (Homoptera : Delphacidae), comprises 8 acini of only 6 ultrastructurally different acinar types. In these acini, secretory cells contain elongated vacuoles partly lined by microvilli and by microtubule bundles. These vacuoles are apparently connected with extracellular canaliculi deeply invaginated into secretory cells. Canaliculi of each acinus lead to a ductule lumen, which is lined with spiral cuticular intima, surrounded by duct cells. Striated muscle fibers, supplied with small nerve axons and tracheoles, are found in various acini of the principal gland, usually around secretory and duct cells.In the accessory salivary gland, the 2 large secretory cells contain no elongated vacuoles or canaliculi invaginations. However, in their central region, apically, these cells border a large microvilli-lined canal with its own canal cells. This canal is apparently connected with the cuticle-lined accessory duct, formed by duct cells. Nerve axons, but no muscle fibers, are found in the accessory gland and its duct. It is suggested that the system for transporting secretory material within acini of the principal gland, is basically different from that within the accessory gland.  相似文献   

8.
脉红螺消化系统的形态学研究   总被引:16,自引:2,他引:16  
侯林  程济民 《动物学报》1991,37(1):7-15
脉红螺消化系统由十二个器官组成。其消化管壁都由粘膜层、粘膜下层、肌层和外膜四层结构构成。作者对消化腺的细胞进行了较详细的描述,并利用组化方法测定消化腺细胞中含有的酶类。作者还对部分器官的超微结构进行了观察。  相似文献   

9.
The fine structure of the interommatidial exocrine glands, found in the compound eyes of the water strider Aquarius remigis, is described using light, scanning, and transmission electron microscopy. The glandular pores of the glands are specialized into minute “nail-headed” structures (NS), which are described for the first time in arthropod compound eyes. Each NS is composed of two components: a rod-like stalk and a cup-like depression. The TEM study shows that the glands are class 3 epidermal glands as defined by Noirot and Quennedey (1974, 1991). Each gland consists of 3 cells: a gland cell, an intermediary cell, and a duct (canal) cell. The gland cell contains abundant electron-lucent vesicles, while the intermediary cell contains a large number of osmiophilic secretory granules. These two cells might secrete different substances which mix together in the dilated sac-like portion of the conducting canal before final release. The possible functions of the secretions released from these glands are discussed.  相似文献   

10.
Ch. Todt 《Zoomorphology》2006,125(3):119-134
Foregut glands in Solenogastres are not only of importance in biological processes like feeding and digestion, but multicellular foregut glands also provide valuable characters for taxonomy and systematics. Here, the fine structure of four different types of foregut glands is investigated: the Meioherpia-type ventrolateral foregut gland of Meioherpia atlantica, the Simrothiella-type ventrolateral foregut gland of Simrothiella cf. margaritacea, and the Pararrhopalia-type ventrolateral foregut gland as well as the dorsal gland of Pararrhopalia pruvoti. Thereby, special focus is set on the arrangement of glandular and supporting cells within the glands, and on the characterization of glandular cells according to the size, shape and electron-density of their secretional vesicles. It is shown that the investigated glands are complex organs composed of non-glandular supporting cells and two to five glandular cell types producing discrete secretions.  相似文献   

11.
Podisus nigrispinus Dallas (Hemiptera: Pentatomidae) is a zoophytophagous insect with a potential for use as a biological control agent in agriculture because nymphs and adults actively prey on various insects by inserting mouthparts and regurgitating the contents of the salivary glands inside the prey, causing rapid paralysis and death. However, the substances found in saliva of P. nigrispinus that causes the death of the prey are unknown. As a first step to identify the component of the saliva of P. nigrispinus, this study evaluated the ultrastructure and cytochemistry of the salivary glands of P. nigrispinus. The salivary system of P. nigrispinus has a pair of principal salivary glands, which are bilobed with a short anterior lobe and a long posterior lobe, and a pair of tubular accessory glands. The principal gland epithelium is composed of a single layer of cells enclosing a large lumen. Epithelial cells of the principal salivary gland vary from cubic to columnar shape, with one or two spherical and well-developed nuclei. Cells of the anterior lobe of the principal salivary gland have an apical surface with narrow, short, and irregular plasma membrane foldings; apical and perinuclear cytoplasm rich in rough endoplasmic reticulum; and mitochondria with tubular cristae. The basal portion of the secretory cells has mitochondria associated with many basal plasma membrane infoldings that are short but form large extracellular canals. Secretory granules with electron-dense core and electron-transparent peripheral are dispersed throughout the cytoplasm. Cells of the posterior lobe of the principal salivary gland are similar to those of the anterior lobe, except for the presence of mitochondria with transverse cristae. The accessory salivary gland cells are columnar with apical microvilli, have well-developed nucleus and cytoplasm rich in rough endoplasmic reticulum, and have secretory granules. Cytochemical tests showed positive reactions for carbohydrate, protein, and acid phosphatase in different regions of the glandular system. The principal salivary glands of P. nigrispinus do not have muscle cells attached to its wall, suggesting that saliva-releasing mechanism may occurs with the participation of some thorax muscles. The cytochemical and ultrastructural features suggest that the principal and accessory salivary glands play a role in protein synthesis of the saliva.  相似文献   

12.
The bilateral salivary glands, ducts, and nerves of the giant garden slug Limax maximus control the secretion of saliva and its transport to the buccal mass. Each salivary nerve, which originates at the buccal ganglion, contains over 3000 axon profiles. The axons innervate the musculature of the duct and branch within the gland. The salivary duct is composed of several muscular layers surrounding an epithelial layer which lines the duct lumen. The morphology of the duct epithelium indicates that it may function in ion or water balance. The salivary gland contains four major types of secretory cells. The secretory products are released from vacuoles in the gland cells, and are presumably transported by cilia in the collecting ducts of the gland into the larger muscular ducts.  相似文献   

13.
The food canal of the proboscis of Lepidoptera serves for the uptake of nutrient fluids and the discharge of saliva. A valve was discovered at the entrance to the sucking pump in the head that separates these countercurrent flows in nymphalid butterflies. Three species of Nymphalidae were examined by dissections and light microscopic serial semithin sections. The sucking pump is a unit composed of three structures: (1) the oral valve, which is a projection of the epipharynx extending into the anterior cibarial lumen, (2) the expandable lumen, and (3) the posterior sphincter valve which controls influx into the oesophagus. Based on the microanatomical results, a functional model is presented to account for the uptake and swallowing of fluids and for the control of the salivary flow into the food canal of the proboscis. Dilator muscles of the sucking pump expand the lumen by pulling on the muscular dorso-anterior side. This opens the oral valve and fluid can be drawn into the lumen from the food canal of the proboscis. Circular compressor muscles which attach to both sides of the sclerotized ventro-posterior wall of the sucking pump reduce the size of the lumen; passively they close the oral valve and press fluid through the relaxed posterior sphincter opening into the oesophagus. According to this model saliva can be discharged into the food canal during the swallowing phase. The oral valve and pumping unit are similar in all studied species despite the fact that saliva presumably plays a special role in the derived pollen-feeding behaviour of one of them, viz. Heliconius melpomene.  相似文献   

14.
When treating head and neck for cancer with the use of radiotherapy the salivary glands are usually within the treatment volume with ensuing dryness and discomfort. Since the autonomic nervous system is of pivotal importance for the salivary gland function and integrity, the irradiation-induced effects may involve an influence on the innervation of salivary glands. Therefore, the rat submandibular gland, including the submandibular ganglionic cells, has been subjected to immunohistochemical examination with respect to expression of neuropeptides following fractionated irradiation with high energy photons. A markedly enhanced expression of bombesin- and leu-enkephalin-(ENK)-like immunoreactivities (LI) in the ganglionic cells and a pronounced increase in the number of nerve fibers showing these immunoreactivities in the submandibular gland tissue following irradiation were observed 10 days after treatment. On the other hand, no changes in the patterns of VIP (vasoactive intestinal polypeptide)- and NPY (neuropeptide Y)-immunoreactivities occurred. Thus, the present study shows that alterations in the expression of certain neuropeptides take place in the submandibular gland and its associated ganglionic cells in response to irradiation of the head and neck region. These changes may add further explanation to the inherent radiosensitivity of salivary glands.  相似文献   

15.
The external morphology of the cuticular spines, and the ultrastructure of the spines and neck gland in fifth instar Abananote hylonome larvae was studied. The larvae are spiny along the length of their bodies. Along the length of the spines are setae with a swelling towards the apical region. Internally, in the base of each seta there is a complex of secretory cells surrounding a large vacuole continuous with the seta. The neck gland is eversible, composed of a pair of oval internal sacks connected to the exterior via an extracellular canal produced by an invagination of the cuticle. The sack cells surround a reservoir containing an amorphous substance. In both the spines and neck gland the nuclei are large and irregularly shaped, typical of defensive glands of Lepidoptera. The border of the cells adjacent to the vacuoles (spines) and the reservoir (neck gland) is made up of numerous microvilli. We suggest that defensive compounds are produced in the gland cells and then later released via the vacuoles in the spines and the extracellular canal in the neck gland.  相似文献   

16.
Summary The cellular mechanisms responsible for the structural and functional alterations produced in salivary glands by isoproterenol (ISP) were investigated. Postnatal rats were injected with ISP, and alterations in the structure and protein components of the submandibular glands were determined. Normal age-dependent protein patterns detected by electrophoresis are attributed to the biochemical and functional differentiation of proacinar and acinar secretory cells and correlate with structural changes in these cells. Structural changes induced by ISP involve the acinar cells without detectably altering terminal tubule cells. In addition, synthesis of a specific protein by the glands is enhanced by ISP treatment. By comparing protein patterns in the submandibular glands of control and treated rats, it was concluded that ISP increases synthesis of a specific salivary protein normally produced by proacinar cells during a limited period of glandular development. These results suggest that a neurally mediated regulatory mechanism that becomes altered by ISP plays a role in normal salivary gland development.Supported in part by NIDR grant DE-02670.The authors wish to thank Dr. C.A. Schneyer for her comments in the preparation of this paper  相似文献   

17.
Cytochemical studies were carried out to establish lipid distribution in the salivary glands of larvae and adult bees, using the imidazole buffer technique. In the duct cells of the larval salivary gland, the reaction was positive in the epicuticle and negative in the glandular lumen. The absence of smooth endoplasmic reticulum and the presence of lipids in the intercellular space suggest that lipids absorbed from the haemolymph could be used in the constitution of the epicuticle, after having been conveyed through the epithelium. In adult workers (new-emerged, nurse and forager workers), the head salivary glands presented a positive reaction in the secretion in glandular lumen, identifying its lipidic nature.  相似文献   

18.
石磺消化系统的组织学观察   总被引:1,自引:0,他引:1  
对石磺消化系统各部分结构进行组织学观察.石磺的消化系统由消化道和消化腺两部分组成.消化道包括口、食道、贲门胃、幽门胃、中肠和后肠,不具吻;消化腺包括肝胰腺、唾液腺和肛门腺.在光学显微镜下,消化道由粘膜层、粘膜下层、肌层和外膜4层组成;肌层主要为环肌,粘膜层主要为柱状细胞.肝胰腺甚为发达,组织结构显示肝胰腺由很多分支的腺管组成,腺管由腺细胞、分泌细胞等组成.唾液腺和肛门腺发达.  相似文献   

19.
The ultrastructure of epidermal glands in neotenic reproductives of Prorhinotermes simplex is described and their development is compared among young and old neotenics of both sexes. Secretory cells forming the epidermal gland are attached to the cuticle all over the body. The glands are formed by class 1 and class 3 secretory cells and corresponding canal cells with secretory function. Class 1 cells are sandglass-like and class 3 secretory units are located among them. Class 1 cells contain predominantly tubular endoplasmic reticulum, the major part represents the smooth and the minor the rough form. Numerous electron dense granules occur in the cytoplasm, they are always disintegrated prior to be released. Class 3 secretory cells contain a large amount of vacuoles, which are always lucent in males while newly produced vacuoles are dense in females. Dense vacuoles are frequently transformed into lucent ones before being released. Canal cells are locally equipped with microvilli. The conducting canal is surrounded by an electron dense secretion of regular inner structure. The cytoplasm of the canal cell contains numerous mitochondria, rough endoplasmic reticulum and a large proportion of microtubules. The young neotenic reproductives differ from the old ones by a lower amount of secretory products. Epidermal glands probably produce substances inhibiting the occurrence of superfluous reproductives.  相似文献   

20.
This is the first ultrastructural investigation of salivary glands in the family Cheyletidae. In both sexes of Bakericheyla chanayi, paired acinous salivary glands and tubular coxal glands were shown to be united into the common podocephalic system. The secretory portion of the salivary gland includes medial and lateral lobes composed of the five and two cells, respectively, with clearly distinct ultrastructure. The cytoplasm of the cells is occupied by the secretory granules containing fine fibrous material. The fine structure of both cell types suggest a proteinaceous nature of their secretions. A single central process extending from the apical face of each secretory cell passes through the common acinar cavity to enter the conducting duct. A pair of intercalary cells at the base of the conducting duct links it with the secretory portion of the gland. Extending towards the acinar cavity, protrusions of intercalary cells alternate the apical regions of the secretory cells and form with them highly‐specialized contacts characterized by the apical network of microtubules and microfilaments. Two possible ways of secretion are suggested: 1) exocytosis into the acinar cavity and 2) direct passage via the central processes. The detection of axon profiles in the gland body suggests a neural control for the glandular cell function. In tritonymphs, neither secretion nor large lateral lobe cells were observed up to the pharate stage when the lateral lobe undergoes rapid differentiation. The arrangement of the acinous gland is compared to that of other arthropods. Its composition appears to be close to the class three of insect glands. The involvement of the lateral lobe cells in silk production is discussed. J. Morphol. 276:772–786, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号