首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How stable synchrony in neuronal networks is sustained in the presence of conduction delays is an open question. The Dynamic Clamp was used to measure phase resetting curves (PRCs) for entorhinal cortical cells, and then to construct networks of two such neurons. PRCs were in general Type I (all advances or all delays) or weakly type II with a small region at early phases with the opposite type of resetting. We used previously developed theoretical methods based on PRCs under the assumption of pulsatile coupling to predict the delays that synchronize these hybrid circuits. For excitatory coupling, synchrony was predicted and observed only with no delay and for delays greater than half a network period that cause each neuron to receive an input late in its firing cycle and almost immediately fire an action potential. Synchronization for these long delays was surprisingly tight and robust to the noise and heterogeneity inherent in a biological system. In contrast to excitatory coupling, inhibitory coupling led to antiphase for no delay, very short delays and delays close to a network period, but to near-synchrony for a wide range of relatively short delays. PRC-based methods show that conduction delays can stabilize synchrony in several ways, including neutralizing a discontinuity introduced by strong inhibition, favoring synchrony in the case of noisy bistability, and avoiding an initial destabilizing region of a weakly type II PRC. PRCs can identify optimal conduction delays favoring synchronization at a given frequency, and also predict robustness to noise and heterogeneity.  相似文献   

2.
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.  相似文献   

3.
Spike generation in cortical neurons depends on the interplay between diverse intrinsic conductances. The phase response curve (PRC) is a measure of the spike time shift caused by perturbations of the membrane potential as a function of the phase of the spike cycle of a neuron. Near the rheobase, purely positive (type I) phase-response curves are associated with an onset of repetitive firing through a saddle-node bifurcation, whereas biphasic (type II) phase-response curves point towards a transition based on a Hopf-Andronov bifurcation. In recordings from layer 2/3 pyramidal neurons in cortical slices, cholinergic action, consistent with down-regulation of slow voltage-dependent potassium currents such as the M-current, switched the PRC from type II to type I. This is the first report showing that cholinergic neuromodulation may cause a qualitative switch in the PRCs type implying a change in the fundamental dynamical mechanism of spike generation.  相似文献   

4.
Noise-induced complete synchronization and frequency synchronization in coupled spiking and bursting neurons are studied firstly. The effects of noise and coupling are discussed. It is found that bursting neurons are easier to achieve firing synchronization than spiking ones, which means that bursting activities are more important for information transfer in neuronal networks. Secondly, the effects of noise on firing synchronization in a noisy map neuronal network are presented. Noise-induced synchronization and temporal order are investigated by means of the firing rate function and the order index. Firing synchronization and temporal order of excitatory neurons can be greatly enhanced by subthreshold stimuli with resonance frequency. Finally, it is concluded that random perturbations play an important role in firing activities and temporal order in neuronal networks.  相似文献   

5.
A tonic-clonic seizure transitions from high frequency asynchronous activity to low frequency coherent oscillations, yet the mechanism of transition remains unknown. We propose a shift in network synchrony due to changes in cellular response. Here we use phase-response curves (PRC) from Morris-Lecar (M-L) model neurons with synaptic depression and gradually decrease input current to cells within a network simulation. This method effectively decreases firing rates resulting in a shift to greater network synchrony illustrating a possible mechanism of the transition phenomenon. PRCs are measured from the M-L conductance based model cell with a range of input currents within the limit cycle. A large network of 3000 excitatory neurons is simulated with a network topology generated from second-order statistics which allows a range of population synchrony. The population synchrony of the oscillating cells is measured with the Kuramoto order parameter, which reveals a transition from tonic to clonic phase exhibited by our model network. The cellular response shift mechanism for the tonic-clonic seizure transition reproduces the population behavior closely when compared to EEG data.  相似文献   

6.
Oscillations of large populations of neurons are thought to be important in the normal functioning of the brain. We have used phase response curve (PRC) methods to characterize the dynamics of single neurons and predict population dynamics. Our past experimental work was limited to special circumstances (e.g., 2-cell networks of periodically firing neurons). Here, we explore the feasibility of extending our methods to predict the synchronization properties of stellate cells (SCs) in the rat entorhinal cortex under broader conditions. In particular, we test the hypothesis that PRCs in SCs scale linearly with changes in synaptic amplitude, and measure how well responses to Poisson process-driven inputs can be predicted in terms of PRCs. Although we see nonlinear responses to excitatory and inhibitory inputs, we find that models based on weak coupling account for scaling and Poisson process-driven inputs reasonably accurately.  相似文献   

7.
Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate.  相似文献   

8.
In circadian rhythms, the shape of the phase response curves (PRCs) depends on the strength of the resetting stimulus. Weak stimuli produce Type 1 PRCs with small phase shifts and a continuous transition between phase delays and advances, whereas strong stimuli produce Type 0 PRCs with large phase shifts and a distinct break point at the transition between delays and advances. A stimulus of an intermediate strength applied close to the break point in a Type 0 PRC sometimes produces arrhythmicity. A PRC for the circannual rhythm was obtained in pupation of the varied carpet beetle, Anthrenus verbasci, by superimposing a 4-week long-day pulse (a series of long days for 4 weeks) over constant short days. The shape of this PRC closely resembles that of the Type 0 PRC. The present study shows that the PRC to 2-week long-day pulses was Type 1, and that a 4-week long-day pulse administered close to the PRC’s break point induced arrhythmicity in pupation. It is, therefore, suggested that circadian and circannual oscillators share the same mode in phase resetting to the stimuli.  相似文献   

9.
We review the principal assumptions underlying the application of phase-response curves (PRCs) to synchronization in neuronal networks. The PRC measures how much a given synaptic input perturbs spike timing in a neural oscillator. Among other applications, PRCs make explicit predictions about whether a given network of interconnected neurons will synchronize, as is often observed in cortical structures. Regarding the assumptions of the PRC theory, we conclude: (i) The assumption of noise-tolerant cellular oscillations at or near the network frequency holds in some but not all cases. (ii) Reduced models for PRC-based analysis can be formally related to more realistic models. (iii) Spike-rate adaptation limits PRC-based analysis but does not invalidate it. (iv) The dependence of PRCs on synaptic location emphasizes the importance of improving methods of synaptic stimulation. (v) New methods can distinguish between oscillations that derive from mutual connections and those arising from common drive. (vi) It is helpful to assume linear summation of effects of synaptic inputs; experiments with trains of inputs call this assumption into question. (vii) Relatively subtle changes in network structure can invalidate PRC-based predictions. (viii) Heterogeneity in the preferred frequencies of component neurons does not invalidate PRC analysis, but can annihilate synchronous activity.  相似文献   

10.
We show that populations of identical uncoupled neurons exhibit partial phase synchronization when stimulated with independent, random unidirectional current spikes with interspike time intervals drawn from a Poisson distribution. We characterize this partial synchronization using the phase distribution of the population, and consider analytical approximations and numerical simulations of phase-reduced models and the corresponding conductance-based models of typical Type I (Hindmarsh-Rose) and Type II (Hodgkin-Huxley) neurons, showing quantitatively how the extent of the partial phase synchronization depends on the magnitude and mean interspike frequency of the stimulus. Furthermore, we present several simple examples that disprove the notion that phase synchrony must be strongly related to spike synchrony. Instead, the importance of partial phase synchrony is shown to lie in its influence on the response of the population to stimulation, which we illustrate using first spike time histograms.  相似文献   

11.
The circuitry of cortical networks involves interacting populations of excitatory (E) and inhibitory (I) neurons whose relationships are now known to a large extent. Inputs to E- and I-cells may have their origins in remote or local cortical areas. We consider a rudimentary model involving E- and I-cells. One of our goals is to test an analytic approach to finding firing rates in neural networks without using a diffusion approximation and to this end we consider in detail networks of excitatory neurons with leaky integrate-and-fire (LIF) dynamics. A simple measure of synchronization, denoted by S(q), where q is between 0 and 100 is introduced. Fully connected E-networks have a large tendency to become dominated by synchronously firing groups of cells, except when inputs are relatively weak. We observed random or asynchronous firing in such networks with diverse sets of parameter values. When such firing patterns were found, the analytical approach was often able to accurately predict average neuronal firing rates. We also considered several properties of E-E networks, distinguishing several kinds of firing pattern. Included were those with silences before or after periods of intense activity or with periodic synchronization. We investigated the occurrence of synchronized firing with respect to changes in the internal excitatory postsynaptic potential (EPSP) magnitude in a network of 100 neurons with fixed values of the remaining parameters. When the internal EPSP size was less than a certain value, synchronization was absent. The amount of synchronization then increased slowly as the EPSP amplitude increased until at a particular EPSP size the amount of synchronization abruptly increased, with S(5) attaining the maximum value of 100%. We also found network frequency transfer characteristics for various network sizes and found a linear dependence of firing frequency over wide ranges of the external afferent frequency, with non-linear effects at lower input frequencies. The theory may also be applied to sparsely connected networks, whose firing behaviour was found to change abruptly as the probability of a connection passed through a critical value. The analytical method was also found to be useful for a feed-forward excitatory network and a network of excitatory and inhibitory neurons.  相似文献   

12.
The synchronization of different γ-rhythms arising in different brain areas has been implicated in various cognitive functions. Here, we focus on the effect of the ubiquitous neuronal heterogeneity on the synchronization of ING (interneuronal network gamma) and PING (pyramidal-interneuronal network gamma) rhythms. The synchronization properties of rhythms depends on the response of their collective phase to external input. We therefore determine the macroscopic phase-response curve for finite-amplitude perturbations (fmPRC) of ING- and PING-rhythms in all-to-all coupled networks comprised of linear (IF) or quadratic (QIF) integrate-and-fire neurons. For the QIF networks we complement the direct simulations with the adjoint method to determine the infinitesimal macroscopic PRC (imPRC) within the exact mean-field theory. We show that the intrinsic neuronal heterogeneity can qualitatively modify the fmPRC and the imPRC. Both PRCs can be biphasic and change sign (type II), even though the phase-response curve for the individual neurons is strictly non-negative (type I). Thus, for ING rhythms, say, external inhibition to the inhibitory cells can, in fact, advance the collective oscillation of the network, even though the same inhibition would lead to a delay when applied to uncoupled neurons. This paradoxical advance arises when the external inhibition modifies the internal dynamics of the network by reducing the number of spikes of inhibitory neurons; the advance resulting from this disinhibition outweighs the immediate delay caused by the external inhibition. These results explain how intrinsic heterogeneity allows ING- and PING-rhythms to become synchronized with a periodic forcing or another rhythm for a wider range in the mismatch of their frequencies. Our results identify a potential function of neuronal heterogeneity in the synchronization of coupled γ-rhythms, which may play a role in neural information transfer via communication through coherence.  相似文献   

13.
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.  相似文献   

14.
A phase resetting curve (PRC) keeps track of the extent to which a perturbation at a given phase advances or delays the next spike, and can be used to predict phase locking in networks of oscillators. The PRC can be estimated by convolving the waveform of the perturbation with the infinitesimal PRC (iPRC) under the assumption of weak coupling. The iPRC is often defined with respect to an infinitesimal current as zi(ϕ), where ϕ is phase, but can also be defined with respect to an infinitesimal conductance change as zg(ϕ). In this paper, we first show that the two approaches are equivalent. Coupling waveforms corresponding to synapses with different time courses sample zg(ϕ) in predictably different ways. We show that for oscillators with Type I excitability, an anomalous region in zg(ϕ) with opposite sign to that seen otherwise is often observed during an action potential. If the duration of the synaptic perturbation is such that it effectively samples this region, PRCs with both advances and delays can be observed despite Type I excitability. We also show that changing the duration of a perturbation so that it preferentially samples regions of stable or unstable slopes in zg(ϕ) can stabilize or destabilize synchrony in a network with the corresponding dynamics.  相似文献   

15.
Wang Q  Chen G  Perc M 《PloS one》2011,6(1):e15851
This paper investigates the dependence of synchronization transitions of bursting oscillations on the information transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-free neuronal networks with delays.  相似文献   

16.
Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN) neuron. We show how external globus pallidus (GPe) neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson''s disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson''s disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties) may be one of the potential mechanisms responsible for the generation of the intermittent synchronization observed in Parkinson''s disease.  相似文献   

17.
It was often reported and suggested that the synchronization of spikes can occur without changes in the firing rate. However, few theoretical studies have tested its mechanistic validity. In the present study, we investigate whether changes in synaptic weights can induce an independent modulation of synchrony while the firing rate remains constant. We study this question at the level of both single neurons and neuronal populations using network simulations of conductance based integrate-and-fire neurons. The network consists of a single layer that includes local excitatory and inhibitory recurrent connections, as well as long-range excitatory projections targeting both classes of neurons. Each neuron in the network receives external input consisting of uncorrelated Poisson spike trains. We find that increasing this external input leads to a linear increase of activity in the network, as well␣as an increase in the peak frequency of oscillation. In␣contrast, balanced changes of the synaptic weight of␣excitatory long-range projections for both classes of postsynaptic neurons modulate the degree of synchronization without altering the firing rate. These results demonstrate that, in a simple network, synchronization and firing rate can be modulated independently, and thus, may be used as independent coding dimensions. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

18.
Gamma oscillations can synchronize with near zero phase lag over multiple cortical regions and between hemispheres, and between two distal sites in hippocampal slices. How synchronization can take place over long distances in a stable manner is considered an open question. The phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike, depending upon where in the cycle it is received. We use PRCs under the assumption of pulsatile coupling to derive existence and stability criteria for 1:1 phase-locking that arises via bidirectional pulse coupling of two limit cycle oscillators with a conduction delay of any duration for any 1:1 firing pattern. The coupling can be strong as long as the effect of one input dissipates before the next input is received. We show the form that the generic synchronous and anti-phase solutions take in a system of two identical, identically pulse-coupled oscillators with identical delays. The stability criterion has a simple form that depends only on the slopes of the PRCs at the phases at which inputs are received and on the number of cycles required to complete the delayed feedback loop. The number of cycles required to complete the delayed feedback loop depends upon both the value of the delay and the firing pattern. We successfully tested the predictions of our methods on networks of model neurons. The criteria can easily be extended to include the effect of an input on the cycle after the one in which it is received.  相似文献   

19.
Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective properties of neurons and networks, by quantifying the impact of an infinitesimal depolarizing current pulse on the time of occurrence of subsequent action potentials, while a neuron is firing tonically. Recently, the PRC theory applied to cerebellar Purkinje cells revealed that these behave as phase-independent integrators at low firing rates, and switch to a phase-dependent mode at high rates. Given the implications for computation and information processing in the cerebellum and the possible role of synchrony in the communication with its post-synaptic targets, we further explored the firing rate dependency of the PRC in Purkinje cells. We isolated key factors for the experimental estimation of the PRC and developed a closed-loop approach to reliably compute the PRC across diverse firing rates in the same cell. Our results show unambiguously that the PRC of individual Purkinje cells is firing rate dependent and that it smoothly transitions from phase independent integrator to a phase dependent mode. Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve.  相似文献   

20.
The activity patterns of the globus pallidus (GPe) and subthalamic nucleus (STN) are closely associated with motor function and dysfunction in the basal ganglia. In the pathological state caused by dopamine depletion, the STN–GPe network exhibits rhythmic synchronous activity accompanied by rebound bursts in the STN. Therefore, the mechanism of activity transition is a key to understand basal ganglia functions. As synchronization in GPe neurons could induce pathological STN rebound bursts, it is important to study how synchrony is generated in the GPe. To clarify this issue, we applied the phase-reduction technique to a conductance-based GPe neuronal model in order to derive the phase response curve (PRC) and interaction function between coupled GPe neurons. Using the PRC and interaction function, we studied how the steady-state activity of the GPe network depends on intrinsic membrane properties, varying ionic conductances on the membrane. We noted that a change in persistent sodium current, fast delayed rectifier Kv3 potassium current, M-type potassium current and small conductance calcium-dependent potassium current influenced the PRC shape and the steady state. The effect of those currents on the PRC shape could be attributed to extension of the firing period and reduction of the phase response immediately after an action potential. In particular, the slow potassium current arising from the M-type potassium and the SK current was responsible for the reduction of the phase response. These results suggest that the membrane property modulation controls synchronization/asynchronization in the GPe and the pathological pattern of STN–GPe activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号