首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps.  相似文献   

2.
H-index is the most commonly applied tool to evaluate scientific productivity. In this study, the use of the H-index to evaluate scientific production in swine veterinary medicine was explored. A database of 137 pig infectious agents was constructed, including its taxonomic division, zoonotic potential, status as emerging pathogen and whether it was OIE-listed. The H-index and the total number of citations were calculated for those pathogens, the location of the affiliation of the first author of each paper included in the H-index core was registered and, for the ten pathogens with the highest H-index, evolution over time was measured. H-index values were compared to the M quotient, A-index, G-index, HG-index and the G/H ratio. H-indices were found to be severely affected by search accuracy and the database was hand curated. Swine pathogen H-indexes were highly dispersed ranging from 0 to 106 and were generally higher for pathogens causing endemic diseases in large pig producing countries. Indeed, the three top pathogens were Escherichia coli, Porcine reproductive and respiratory syndrome virus and Porcine circovirus type 2 with H-indices 106, 95 and 85, respectively. H-indices of viruses and bacteria were significantly higher (P<0.001) than other pathogen types. Also, non-zoonotic pathogens had higher H-indices than zoonotic pathogens (p<0.009) while no differences could be found for being listed by the OIE. For emerging diseases, only non-emerging viruses had higher H-index (p = 0.02). The study of H-indexes over time revealed three general patterns and that they had increased mainly after the 1980’s. As expected, there were strong geographic patterns in terms of authorship and North America (38%) and Europe (46%) coped the majority of the papers. Finally, in order to quantify the contribution of a subject to a specific field, a new index “Deciphering Citations Organized by Subject” (Dcos) is proposed.  相似文献   

3.
The disability-adjusted life year (DALY) initially appeared attractive as a health metric in the Global Burden of Disease (GBD) program, as it purports to be a comprehensive health assessment that encompassed premature mortality, morbidity, impairment, and disability. It was originally thought that the DALY would be useful in policy settings, reflecting normative valuations as a standardized unit of ill health. However, the design of the DALY and its use in policy estimates contain inherent flaws that result in systematic undervaluation of the importance of chronic diseases, such as many of the neglected tropical diseases (NTDs), in world health. The conceptual design of the DALY comes out of a perspective largely focused on the individual risk rather than the ecology of disease, thus failing to acknowledge the implications of context on the burden of disease for the poor. It is nonrepresentative of the impact of poverty on disability, which results in the significant underestimation of disability weights for chronic diseases such as the NTDs. Finally, the application of the DALY in policy estimates does not account for the nonlinear effects of poverty in the cost-utility analysis of disease control, effectively discounting the utility of comprehensively treating NTDs. The present DALY framework needs to be substantially revised if the GBD is to become a valid and useful system for determining health priorities.  相似文献   

4.
Risk factors for human disease emergence   总被引:24,自引:0,他引:24  
A comprehensive literature review identifies 1415 species of infectious organism known to be pathogenic to humans, including 217 viruses and prions, 538 bacteria and rickettsia, 307 fungi, 66 protozoa and 287 helminths. Out of these, 868 (61%) are zoonotic, that is, they can be transmitted between humans and animals, and 175 pathogenic species are associated with diseases considered to be 'emerging'. We test the hypothesis that zoonotic pathogens are more likely to be associated with emerging diseases than non-emerging ones. Out of the emerging pathogens, 132 (75%) are zoonotic, and overall, zoonotic pathogens are twice as likely to be associated with emerging diseases than non-zoonotic pathogens. However, the result varies among taxa, with protozoa and viruses particularly likely to emerge, and helminths particularly unlikely to do so, irrespective of their zoonotic status. No association between transmission route and emergence was found. This study represents the first quantitative analysis identifying risk factors for human disease emergence.  相似文献   

5.
Human African trypanosomiasis (HAT, or sleeping sickness) is a protozoan parasitic infection caused by Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense. These are neglected tropical diseases, and T.b. rhodesiense HAT is a zoonosis. We review current knowledge on the burden of HAT in sub-Saharan Africa, with an emphasis on the disability-adjusted life year (DALY), data sources, and methodological issues relating to the use of this metric for assessing the burden of this disease. We highlight areas where data are lacking to properly quantify the impact of these diseases, mainly relating to quantifying under-reporting and disability associated with infection, and challenge the HAT research community to tackle the neglect in data gathering to enable better evidence-based assessments of burden using DALYs or other appropriate measures.  相似文献   

6.

Objective

Iran as a developing country is in the transition phase, which might have a big impact on the Burden of Disease and Injury (BOD). This study aims to estimate Burden of Disease and Injury (BOD) in Iran up to 2025 due to four broad cause groups using Disability-Adjusted Life Year (DALY).

Methods

The impacts of demographic and epidemiological changes on BOD (DemBOD and EpiBOD) were assessed separately. We estimated DemBOD in nine scenarios, using different projections for life expectancy and total fertility rate. EpiBOD was modeled in two scenarios as a proportion of DemBOD, based on the extracted parameters from an international study.

Findings

The BOD is projected to increase from 14.3 million in 2003 to 19.4 million in 2025 (95% uncertainty interval: 16.8, 21.9), which shows an overall increase of 35.3%. Non-communicable diseases (12.7 million DALY, 66.0%), injuries (4.6 million DALY, 24.0%), and communicable diseases, except HIV/AIDS (1.8 million DALY, 9%) will be the leading causes of losing healthy life. Under the most likely scenario, the maximum increase in disease burden due to DemBOD is projected to be observed in HIV/AIDS and Non-communicable diseases (63.9 and 62.4%, respectively) and due to EpiBOD in HIV/AIDS (319.5%).

Conclusion

It seems that in the following decades, BOD will have a sharp increase in Iran, mainly due to DemBOD. It seems that communicable diseases (except HIV/AIDS) will have less contribution, and especially non-communicable diseases will play a more significant role.  相似文献   

7.
This paper reviews the evidence for host genetic variation in resistance to infectious diseases for a wide variety of diseases of economic importance in poultry, cattle, pig, sheep and Atlantic salmon. Further, it develops a method of ranking each disease in terms of its overall impact, and combines this ranking with published evidence for host genetic variation and information on the current state of genomic tools in each host species. The outcome is an overall ranking of the amenability of each disease to genomic studies that dissect host genetic variation in resistance. Six disease-based assessment criteria were defined: industry concern, economic impact, public concern, threat to food safety or zoonotic potential, impact on animal welfare and threat to international trade barriers. For each category, a subjective score was assigned to each disease according to the relative strength of evidence, impact, concern or threat posed by that particular disease, and the scores were summed across categories. Evidence for host genetic variation in resistance was determined from available published data, including breed comparison, heritability studies, quantitative trait loci (QTL) studies, evidence of candidate genes with significant effects, data on pathogen sequence and on host gene expression analyses. In total, 16 poultry diseases, 13 cattle diseases, nine pig diseases, 11 sheep diseases and three Atlantic salmon diseases were assessed. The top-ranking diseases or pathogens, i.e. those most amenable to studies dissecting host genetic variation, were Salmonella in poultry, bovine mastitis, Marek's disease and coccidiosis, both in poultry. The top-ranking diseases or pathogens in pigs, sheep and Atlantic salmon were Escherichia coli, mastitis and infectious pancreatic necrosis, respectively. These rankings summarise the current state of knowledge for each disease and broadly, although not entirely, reflect current international research efforts. They will alter as more information becomes available and as genome tools become more sophisticated for each species. It is suggested that this approach could be used to rank diseases from other perspectives as well, e.g. in terms of disease control strategies.  相似文献   

8.
Wheat diseases present a constant and evolving threat to food security. We have little understanding as to how increased atmospheric carbon dioxide levels will affect wheat diseases and thus the security of grain supply. Atmospheric CO2 exceeded the 400 ppmv benchmark in 2013 and is predicted to double or even treble by the end of the century. This study investigated the impact of both pathogen and wheat acclimation to elevated CO2 on the development of Fusarium head blight (FHB) and Septoria tritici blotch (STB) disease of wheat. Here, plants and pathogens were cultivated under either 390 or 780 ppmv CO2 for a period (two wheat generations, multiple pathogen subcultures) prior to standard disease trials. Acclimation of pathogens and the wheat cultivar Remus to elevated CO2 increased the severity of both STB and FHB diseases, relative to ambient conditions. The effect of CO2 on disease development was greater for FHB than for STB. The highest FHB disease levels and associated yield losses were recorded for elevated CO2‐acclimated pathogen on elevated CO2‐acclimated wheat. When similar FHB experiments were conducted using the disease‐resistant cultivar CM82036, pathogen acclimation significantly enhanced disease levels and yield loss under elevated CO2 conditions, thereby indicating a reduction in the effectiveness of the defence pathways innate to this wheat cultivar. We conclude that acclimation to elevated CO2 over the coming decades will have a significant influence on the outcome of plant–pathogen interactions and the durability of disease resistance.  相似文献   

9.
Some potentially invasive herbivores/pathogens in their home range may attack plants originating from another geographic area. Methods are required to assess the risk these herbivores/pathogens pose to these plants in their indigenous ecosystems. The processes and criteria used by weed biological control researchers to assess the impact of potential biological control agents on a plant species in its non-native range provide a possible framework for assessing risks to indigenous plants. While there are similarities between these criteria such as the need for clear objectives, studies in the native range of the herbivore/pathogen, good knowledge of the ecology of the target plant and taxonomy of the plant and herbivore/pathogen, and modelling of the interaction between the two organisms, there are some important differences in approach. These include the need to consider the threat classification of the plant, the likely greater risk from polyphagous herbivores/pathogens than oligophagous or monophagous species, and the need to consider the impact of an additional natural enemy in conjunction with a suite of existing natural enemies. The costs of conducting a risk assessment of a herbivore/pathogen in another country that damages plants indigenous to another geographic area means that criteria will be needed for deciding which foreign herbivore/pathogen species should be assessed. These criteria could include the threat classification of the plant, the amount of damage to the particular plant organs affected, and the importance in key ecosystems.  相似文献   

10.

Background

The WHO has established the disability-adjusted life year (DALY) as a metric for measuring the burden of human disease and injury globally. However, most DALY estimates have been calculated as national totals. We mapped spatial variation in the burden of human African trypanosomiasis (HAT) in Uganda for the years 2000–2009. This represents the first geographically delimited estimation of HAT disease burden at the sub-country scale.

Methodology/Principal Findings

Disability-adjusted life-year (DALY) totals for HAT were estimated based on modelled age and mortality distributions, mapped using Geographic Information Systems (GIS) software, and summarised by parish and district. While the national total burden of HAT is low relative to other conditions, high-impact districts in Uganda had DALY rates comparable to the national burden rates for major infectious diseases. The calculated average national DALY rate for 2000–2009 was 486.3 DALYs/100 000 persons/year, whereas three districts afflicted by rhodesiense HAT in southeastern Uganda had burden rates above 5000 DALYs/100 000 persons/year, comparable to national GBD 2004 average burden rates for malaria and HIV/AIDS.

Conclusions/Significance

These results provide updated and improved estimates of HAT burden across Uganda, taking into account sensitivity to under-reporting. Our results highlight the critical importance of spatial scale in disease burden analyses. National aggregations of disease burden have resulted in an implied bias against highly focal diseases for which geographically targeted interventions may be feasible and cost-effective. This has significant implications for the use of DALY estimates to prioritize disease interventions and inform cost-benefit analyses.  相似文献   

11.
Fungal pathogens can regulate the abundance and distribution of natural plant populations by inhibiting the growth, survival, and reproduction of their hosts. The abiotic environment is a crucial component in host–pathogen interactions in natural plant populations as favorable conditions drive pathogen development, reproduction, and persistence. Foliar plant pathogens, such as fungal lesions referred to generically as “leaf spot disease,” are particularly responsive to increased moisture levels, but the manner in which the abiotic environment drives disease dynamics, and how these diseases regulate natural plant populations, is not fully understood. We investigate (1) the impact of ambient soil moisture and diffuse light on the prevalence of a leaf spot pathogen (Phyllosticta sp.) in a natural population of Polygonatum biflorum, an understory herb native to deciduous forest understories in the eastern US, and (2) the effects of the fungal pathogen on the survival, growth, and abundance of the plants. We tracked six P. biflorum populations and disease incidence, as well as soil moisture and diffuse light, between 2003 and 2005 in the understory deciduous forest of the southern Appalachian Mountains, North Carolina, USA. Results show that both the occurrence of P. biflorum and the prevalence of P. biflorum leaf spot disease are highest where soil moisture is intermediate and diffuse light is lowest. Disease occurrence depends upon plant presence, but it also adversely impacts plant survival, abundance, and growth. These results suggest that leaf spot disease is likely to impact population dynamics, which in turn vary as a function of environmental drivers.  相似文献   

12.
Disgust can be thought of as an affective system that has evolved to detect signs of pathogens, parasite and toxins as well as to stimulate behaviors that reduce the risk of their acquisition. Disgust incorporates social cognitive mechanisms to regulate exposure to and, or anticipate and avoid exposure to pathogens and toxins. Social cognition entails the acquisition of social information about others (ie, social recognition) and from others (ie, social learning). This involves recognizing and assessing other individuals and the pathogen/parasite/contamination/toxin threat they pose and deciding about when and how to interact with and, or avoid them. Social cognition provides a frame‐work for examining the expression of disgust and the associated neurobiological mechanisms. Here, we briefly consider the relations between social cognition and pathogen/parasite/toxin avoidance behaviors. We briefly discuss aspects of: (1) the odor mediated social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on disgust mate and social partner choice; (2) the roles of “out‐groups” (strangers, unfamiliar individuals) and “in‐groups” (familiar individuals) in the expression of disgust and pathogen avoidance behaviors; (3) individual and social learning of disgust and empathy for disgust; (4) toxin elicited disgust and anticipatory disgust; (5) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin and estrogenic mechanism associated with social cognition and the expression of disgust. These findings on the social neuroscience of disgust have a direct bearing on our understanding of the roles of disgust in shaping human and nonhuman social behavior.  相似文献   

13.
14.
Many diseases are less severe when they are contracted in early life. For highly lethal diseases, such as myxomatosis in rabbits, getting infected early in life can represent the best chance for an individual to survive the disease. For myxomatosis, early infections are attenuated by maternal antibodies. This may lead to the immunisation of the host, preventing the subsequent development of the lethal form of the disease. But early infection of young individuals requires specific demographic and epidemiological contexts, such as a high transmission rate of the pathogen agent. To investigate other factors involved in the impact of such diseases, we have built a stochastic model of a rabbit metapopulation infected by myxomatosis. We show that the impact of the pathogen agent can be reduced by early infections only when the agent has a long local persistence time and/or when the host subpopulations are highly connected. The length of the reproductive period and the duration of acquired immunity are also important factors influencing the persistence of the pathogen and thus, the impact of the disease. Besides confirming the role of classical factors in the persistence of a pathogen agent, such as the size of the subpopulation or the degree of connectivity, our results highlight novel factors that can modulate the impact of diseases whose severity increase with age.  相似文献   

15.
The impact of infectious diseases in natural ecosystems is strongly influenced by the degree of pathogen specialization and by the local assemblies of potential host species. This study investigated anther‐smut disease, caused by fungi in the genus Microbotryum, among natural populations of plants in the Caryophyllaceae. A broad geographic survey focused on sites of the disease on multiple host species in sympatry. Analysis of molecular identities for the pathogens revealed that sympatric disease was most often due to co‐occurrence of distinct, host‐specific anther‐smut fungi, rather than localized cross‐species disease transmission. Flowers from sympatric populations showed that the Microbotryum spores were frequently moved between host species. Experimental inoculations to simulate cross‐species exposure to the pathogens in these plant communities showed that the anther‐smut pathogen was less able to cause disease on its regular host when following exposure of the plants to incompatible pathogens from another host species. These results indicate that multi‐host/multi‐pathogen communities are common in this system and they involve a previously hidden mechanism of interference between Microbotryum fungi, which likely affects both pathogen and host distributions.  相似文献   

16.
Sexually transmitted infections (STIs) are often associated with chronic diseases and can have severe impacts on host reproductive success. For airborne or socially transmitted pathogens, patterns of contact by which the infection spreads tend to be dispersed and each contact may be of very short duration. By contrast, the transmission pathways for STIs are usually characterized by repeated contacts with a small subset of the population. Here we review how heterogeneity in sexual contact patterns can influence epidemiological dynamics, and present a simple model of polygyny/polyandry to illustrate the impact of biased mating systems on disease incidence and pathogen virulence.  相似文献   

17.
Effects of species diversity on disease risk   总被引:10,自引:2,他引:8  
The transmission of infectious diseases is an inherently ecological process involving interactions among at least two, and often many, species. Not surprisingly, then, the species diversity of ecological communities can potentially affect the prevalence of infectious diseases. Although a number of studies have now identified effects of diversity on disease prevalence, the mechanisms underlying these effects remain unclear in many cases. Starting with simple epidemiological models, we describe a suite of mechanisms through which diversity could increase or decrease disease risk, and illustrate the potential applicability of these mechanisms for both vector-borne and non-vector-borne diseases, and for both specialist and generalist pathogens. We review examples of how these mechanisms may operate in specific disease systems. Because the effects of diversity on multi-host disease systems have been the subject of much recent research and controversy, we describe several recent efforts to delineate under what general conditions host diversity should increase or decrease disease prevalence, and illustrate these with examples. Both models and literature reviews suggest that high host diversity is more likely to decrease than increase disease risk. Reduced disease risk with increasing host diversity is especially likely when pathogen transmission is frequency-dependent, and when pathogen transmission is greater within species than between species, particularly when the most competent hosts are also relatively abundant and widespread. We conclude by identifying focal areas for future research, including (1) describing patterns of change in disease risk with changing diversity; (2) identifying the mechanisms responsible for observed changes in risk; (3) clarifying additional mechanisms in a wider range of epidemiological models; and (4) experimentally manipulating disease systems to assess the impact of proposed mechanisms.  相似文献   

18.
Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity.  相似文献   

19.
Bacterial blight and fungal blast diseases of rice, caused by Xanthomonas oryzae pv. oryzae and Pyricularia grisea Sacc., respectively, are two of the most devastating diseases in rice worldwide. To study the defense responses to infection with each of these pathogens, expression profiling of 12 defense-responsive genes was performed using near-isogenic rice lines that are resistant or susceptible to bacterial blight and fungal blast, respectively, and rice cultivars that are resistant or susceptible to both pathogens. All 12 genes showed constitutive expression, but expression levels increased in response to infection. Based on their expression patterns in 12 host-pathogen combinations, these genes could be classified into three types, pathogen non-specific (6), pathogen specific but race non-specific (4) and race specific (2). Most of the 12 genes were only responsive during incompatible interactions. These results suggest that bacterial blight and fungal blast resistances share common pathway(s), but are also regulated by different defense pathways in rice. Activation of the corresponding R gene is the key step that initiates the action of these genes in defense responses. The chromosomal locations and pathogen specificities of seven of the 12 genes were consistent with those of previously identified quantitative trait loci for rice disease resistance, which indicates that some of the 12 genes studied may have a phenotypic impact on disease resistance in rice.  相似文献   

20.
Pathogens that can be transmitted between different host species are of fundamental interest and importance from public health, conservation and economic perspectives, yet systematic quantification of these pathogens is lacking. Here, pathogen characteristics, host range and risk factors determining disease emergence were analysed by constructing a database of disease-causing pathogens of humans and domestic mammals. The database consisted of 1415 pathogens causing disease in humans, 616 in livestock and 374 in domestic carnivores. Multihost pathogens were very prevalent among human pathogens (61.6%) and even more so among domestic mammal pathogens (livestock 77.3%, carnivores 90.0%). Pathogens able to infect human, domestic and wildlife hosts contained a similar proportion of disease-causing pathogens for all three host groups. One hundred and ninety-six pathogens were associated with emerging diseases, 175 in humans, 29 in livestock and 12 in domestic carnivores. Across all these groups, helminths and fungi were relatively unlikely to emerge whereas viruses, particularly RNA viruses, were highly likely to emerge. The ability of a pathogen to infect multiple hosts, particularly hosts in other taxonomic orders or wildlife, were also risk factors for emergence in human and livestock pathogens. There is clearly a need to understand the dynamics of infectious diseases in complex multihost communities in order to mitigate disease threats to public health, livestock economies and wildlife.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号