首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Indicators of cardiovascular strain were studied in 12 healthy young men under the influence of drugs affecting the autonomic nervous system during the course of taking a sauna bath. There were four bath sessions: one without a drug (control) and three with drug pretreatment (Atenolol 50 mg or Scopolamine 0.3 mg or their combination taken orally 2 h before the bath). The time spent in the hot room depended on the subjective rating of heat stress. Its mean duration at a temperature of 88°C (dry bulb) was 22 (range 14–33) min and did not differ significantly among the sessions. In the Atenolol experiment the mean resting heart rate before the bath was significantly lower (P < 0.001, ANOVA of repeated measures) than in the other experiments. The increase in heart rate per minute of heat exposure was significantly lower (P < 0.001) in the Atenolol experiment and higher (P=0.017) in the Scopolamine experiment than in the other experiments. The systolic blood pressure increased more slowly (P=0.004) and the diastolic pressure decreased less (P=0.02) in the Atenolol experiment than in the other experiments. Heart rate and blood pressure returned to their initial levels during the 30-min recovery after the heat exposure. The plasma noradrenaline concentrations increased approximately twofold during all of the bath sessions, whereas the plasma adrenaline and serum thromboxane B2 concentrations showed no consistent alterations. A small oral dose of Scopolamine alone or in combination with Atenolol produced no marked cardiovascular strain in healthy men during a sauna bath.  相似文献   

2.
The aim of the study was to investigate pro-oxidant-antioxidant balance in two series of examinations with two types of stressors (exogenous heat and the combined exogenous and endogenous heat) in trained and untrained men. The exogenous stressor was provided by Finnish sauna session, whereas the combined stressor was represented by the exercise in elevated ambient temperature. The men from the two groups performed the physical exercise on a cycle ergometer with the load of 53±2% maximal oxygen uptake at the temperature of 33±1°C and relative humidity of 70% until their rectal temperature rose by 1.2°C. After a month from completion of the exercise test the subjects participated in a sauna bathing session with the temperature of 96±2°C, and relative humidity of 16±5%. 15-minutes heating and 2-minute cool-down in a shower with the temperature of 20°C was repeated until rectal temperature rose by 1.2°C compared to the initial value. During both series of tests rectal temperature was measured at 5-minute intervals. Before both series of tests and after them body mass was measured and blood samples were taken for biochemical tests. Serum total protein, serum concentration of lipid peroxidation products and serum antioxidants were determined. The athletes were characterized by higher level of antioxidant status and lower concentration of lipid peroxidation products. Physical exercise at elevated ambient temperature caused lower changes in oxidative stress indices compared to sauna bathing. Sauna induced a shift in pro-oxidant-antioxidant balance towards oxidation, which was observed less intensively in the athletes compared to the untrained men. This leads to the conclusion that physical exercise increases tolerance to elevated ambient temperature and oxidative stress.  相似文献   

3.
To clarify the effects of isometric and isotonic exercise during mist sauna bathing on the cardiovascular function, thermoregulatory function, and metabolism, six healthy young men (22?±?1 years old, height 173?±?4 cm, weight 65.0?±?5.0 kg) were exposed to a mist sauna for 10 min at a temperature of 40 °C, and relative humidity of 100 % while performing or not performing ~30 W of isometric or isotonic exercise. The effect of the exercise was assessed by measuring tympanic temperature, heart rate, systolic and diastolic blood pressure, chest sweat rate, chest skin blood flow, and plasma catecholamine and cortisol, glucose, lactate, and free fatty acid levels. Repeated measures ANOVA showed no significant differences in blood pressure, skin blood flow, sweat rate, and total amount of sweating. Tympanic temperature increased more during isotonic exercise, and heart rate increase was more marked during isotonic exercise. The changes in lactate indicated that fatigue was not very great during isometric exercise. The glucose level indicated greater energy expenditure during isometric exercise. The free fatty acid and catecholamine levels indicated that isometric exercise did not result in very great energy expenditure and stress, respectively. The results for isotonic exercise of a decrease in lactate level and an increase in plasma free fatty acid level indicated that fatigue and energy expenditure were rather large while the perceived stress was comparatively low. We concluded that isotonic exercise may be a more desirable form of exercise during mist sauna bathing given the changes in glucose and free fatty acid levels.  相似文献   

4.
The purpose of this study was to determine the effects of acute heat exposure upon muscular strength, muscular endurance, and muscular power in euhydrated athletes. Ten healthy, weight-trained men (average age = 23.0 +/- 4.0 years) volunteered for this investigation. Subjects were randomized to normothermic (22.5 degrees C, 65% relative humidity [RH]) or hyperthermic (65-75 degrees C, 15% RH) condition for 30 minutes. Results indicated that all subjects experienced significant (p < 0.05) hemodynamic stress because of the 30 minutes of heat exposure (blood pressure [BP](rest) 124/78 mm Hg to BP(postsauna) 148/60 mm Hg, heart rate [HR](rest) 64 b.min(-1) to HR(postsauna) 122 b.min(-1)). Oral and tympanic temperature measurements correlated strongly (r(2) = 0.904) and increased by 2.48 and 2.71 degrees C, respectively, during sauna exposure. One repetition maximum (1RM) bench press strength did not differ between the 2 conditions, whereas 1RM leg press strength was significantly decreased (p < 0.05) after the hyperthermic protocol. Subjects' muscular endurance decreased significantly (p < 0.05) in both the leg press (29.2%) and bench press (15.8%) after the sauna exposure. In contrast, muscular power (vertical jump) increased significantly (3.1%, p < 0.5) after acute heat exposure. In agreement with previous studies, we concluded that acute heat exposure is detrimental to muscular endurance; however, the areas of strength and power are far less unequivocal.  相似文献   

5.
The effects of passive heat exposure on atrial natriuretic peptide (ANP) were studied in six healthy men staying in a Finnish sauna at +92 degrees C for 20 min. Their rectal temperature increased by 0.4 degrees C, and evaporative water loss was 0.92 +/- 0.14 (SD) kg. Heart rate and systolic blood pressure increased significantly during the 20-min exposure. Serum osmolality and plasma arginine vasopressin levels increased during the exposure, then declined, and increased significantly again at 90-120 min. Plasma renin activity and aldosterone increased by two- to fourfold in 20 min. Plasma ANP levels rose from 13 +/- 7 to 39 +/- 15 ng/l at 60 min and to 41 +/- 13 ng/l at 120 min (P less than 0.01 for both). We conclude that transient increases in heart rate and systolic blood pressure or changes in blood volume as inferred from the weight loss do not contribute to the increased plasma ANP levels observed after the heat exposure. Instead, increased secretions of pressor hormones could explain the elevated plasma ANP levels observed after the thermal stress.  相似文献   

6.
Temperature is a critical abiotic factor that causes physiological changes in arthropods. However, little is known about the effect of heat stress on the antioxidant responses of Araneae species. Hylyphantes graminicola is a dominant predator in many cropping systems in China. In the present study, the effect of short-term heat stress (36, 38, 40 or 42 °C) on the reactive oxygen species (ROS) levels, the activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], peroxidases [POD] and glutathione-S-transferases GST]), total antioxidant capacity (TAC), malondialdehyde (MDA) concentrations and survival of H. graminicola spiderlings and adults were investigated. The results showed that H. graminicola adults had a significantly higher survival rate compared to spiderlings at 40 °C. The heat stress increased ROS contents in H. graminicola. The SOD, CAT, POD and GST activities increased in spiderlings and adults under heat stress. These data suggest a defensive function for these enzymes in alleviating oxidative damage. Specifically, SOD plays a key role in reducing the high level of superoxide radicals in spiderlings and adults. Moreover, the POD and CAT capabilities for scavenging H2O2 in spiderlings were similar, and CAT may play a more important role than POD in scavenging H2O2 in adults at 42 °C. The spiderling TAC increased significantly at 40 and 42 °C, and the adult TAC was stable at 36–40 °C but decreased at 42 °C. These data suggest that TAC was insufficient in H. graminicola adults under more severe stress conditions. These results further our understanding of the physiological response of Araneae species exposed to heat stress.  相似文献   

7.
Trehalose was supplied to wheat (Triticum aestivum L.) seedlings just before a high temperature (40 °C) treatment and some physiological parameters were measured during the heat stress and recovery. The application of trehalose decreased the net photosynthetic rate (PN) of wheat seedlings under the heat stress, but to a small extent increased the dry mass (DM) and leaf water content (LWC) after recovery from the heat stress. The trehalose-induced decrease in PN under the heat stress was not associated with a stomatal response. The heat stress slightly decreased the maximal efficiency of photosystem II (PS II) photochemistry (the variable to maximum chlorophyll a fluorescence ratio, Fv/Fm) similarly in the trehalose treated or non-treated plants. Under the heat stress, the actual efficiency of PS II photochemistry (ΦPSII) and the efficiency of excitation energy capture by open reaction centers (Fv′/Fm′) were lower in the trehalose-pretreated seedlings, whereas they were higher after the recovery. The patterns of changes in nonphotochemical quenching (NPQ) were contrary to those of ?PS II and Fv′/Fm′. The chlorophyll content was lower, whereas the β-carotene content and the degree of de-epoxidation (DEPS) of xanthophyll cycle pigments were higher in the trehalose-pretreated wheat seedlings under the heat stress. These results suggest that exogenous trehalose partially promotes recovery of wheat by the increase of NPQ, β-carotene content, and DEPS.  相似文献   

8.
The aim of the paper was to follow up major physiological reactions, provoked by heat stress during dry and wet sauna baths. A physical strain index and subjective estimation of heat comfort of subjects who had not taken sauna baths before was also evaluated. Ten healthy males aged 25-28 underwent a dry sauna bath and then after a one-month break they underwent a steam sauna bath. Each time, they entered the sauna chamber 3 times for 15 minutes with five-minute breaks. During breaks they cooled their bodies with a cold shower and then rested in a sitting position. Before and after the baths, body mass and blood pressure were measured. Rectal temperature and heart rate were monitored during the baths. The physiological strain index (PSI) and cumulative heat strain index (CHSI) were calculated. Subjects assessed heat comfort by Bedford''s scale. Greater body mass losses were observed after the dry sauna bath compared to the wet sauna (-0.72 vs. -0.36 kg respectively). However, larger increases in rectal temperature and heart rate were observed during the wet sauna bath (38.8% and 21.2% respectively). Both types of sauna baths caused elevation of systolic blood pressure, but changes were greater after the dry one. Diastolic pressure was reduced similarly. Subjective feelings of heat comfort as well as PSI (4.83 ± 0.29 vs. 5.7 ± 0.28) and CHSI (76.3 ± 18.4 vs. 144.6 ± 21.7) were greater during the wet sauna bath. It can be concluded that due to high humidity and reduction of thermoregulation mechanisms, the wet sauna is more stressful for the organism than the dry sauna, where the temperature is higher with low humidity. Both observed indexes (PSI and CHSI) could be appropriate for objective assessment of heat strain during passive heating of the organism.  相似文献   

9.
In this study we evaluated the contrasting major physiological responses of Jatropha curcas L. to salinity alone and in combination with high temperature. The plants were subjected to salinity (100 mM NaCl) before and after exposure to 43 °C (heat stress) for 6 h. The effects of salinity were more harmful than heat stress, and the effects of salt stress were increased when both stress factors were combined. The negative effects of the combined treatments included strong impairment of the CO2 assimilation rate and stomata conductance and increased Na+ and Cl? accumulation in the leaves associated with increased membrane damage and lipid peroxidation. Heat favorably stimulated the accumulation of glycine betaine and chlorophyll in the salt-stressed leaves. Treatments with salt, heat, and their combination stimulated the antioxidant enzymatic defense system, that is, the expression of ascorbate peroxidase (APX) and superoxide dismutase (SOD), whereas the expression of catalase (CAT) was stimulated through treatments with salt alone and in combination with heat; treatment with heat alone did not affect CAT expression. The ascorbate redox state was decreased under salinity stress alone and in combination with heat but remained unaffected when treated with heat alone. Overall, the leaf H2O2 concentration did not change in response to these stresses, but lipid peroxidation and membrane damage was increased. Moreover, high temperature increases the negative effects of salt stress on key physiological processes, but treatment with heat alone is favorable for several metabolic indicators of young J. curcas plants. In contrast with heat, these plants exhibit higher physiological disturbances under isolated salinity stress.  相似文献   

10.
Cyclitols were prepared from corresponding allylic hydroperoxides, synthesized by photooxygenation of the appropriate cyclic alkenes. These hydroperoxides were then separately treated with a catalytic amount of OsO4. Synthesized dl-cyclopentane-1,2,3-triol 9 (A), dl-cyclohexane-1,2,3-triol 12 (B), and dl-cycloheptane-1,2,3-triol 15 (C) were used in the investigation of plant stress. Antioxidants, lipid peroxidation, and water status of chickpea species exposed to synthetic cyclitols under water deficit were examined. Cyclitol derivatives significantly decreased leaf water potential, lipid peroxidation and H2O2 levels of wild and cultivated species under water deficit. Cyclitol treatments affected antioxidant enzyme activities differently in both species under water deficit. The highest SOD activity was found in A10-treated Cicer arietinum (cultivar) and C10-treated Cicer reticulatum (wild type) under water deficit. CAT activity increased in C. arietinum exposed to A cyclitols, while it increased slightly and then decreased in cyclitol-treated C. reticulatum under stress conditions. AP and GR activities were significantly increased in C. arietinum under water deficit. AP activity increased in C derivatives-treated C. arietinum, while it remained unchanged in C. reticulatum on day 1 of water deficit. GR activity was increased in A derivaties-treated C. arietinum and C derivatives-treated C. reticulatum on day 1 of water deficit and decreased with severity of stress (except for B10-treated C. arietinum). The level of AsA in C treatments and GSH in A treatments increased in C. arietinum on day 1 of water deficit, while in C. reticulatum, AsA and GSH levels decreased under stress conditions. We conclude that exogenous synthetic cyclitol derivatives are biologically active and noncytotoxic, resulting in higher antioxidant activities and lower water potential, thus increasing the water deficit tolerance of chickpea under water deficit, especially of cultivated chickpea. We also propose that synthetic cyclitol derivatives can reduce reactive oxygen species and membrane damage and are beneficial for stress adaptation.  相似文献   

11.
This study investigated whether there are any gender differences in body-heating strategies during cold stress and whether the immune and neuroendocrine responses to physiological stress differ between men and women. Thirty-two participants (18 men and 14 women) were exposed to acute cold stress by immersion to the manubrium level in 14 °C water. The cold stress continued until rectal temperature (TRE) reached 35.5 °C or for a maximum of 170 min. The responses to cold stress of various indicators of body temperature, insulation, metabolism, shivering, stress, and endocrine and immune function were compared between men and women. During cold stress, TRE and muscle and mean skin temperatures decreased in all subjects (P < 0.001). These variables and the TRE cooling rate did not differ between men and women. The insulative response was greater in women (P < 0.05), whereas metabolic heat production and shivering were greater (P < 0.05) in men. Indicators of cold strain did not differ between men and women, but men exhibited larger changes in the indicators of neuroendocrine (epinephrine level) and in immune (tumor necrosis factor-α level) responses (both P < 0.05). The results of the present study indicated that men exhibited a greater metabolic response and shivering thermogenesis during acute cold stress, whereas women exhibited a greater insulative response. Despite the similar experience of cold strain in men and women, the neuroendocrine and immune responses were larger in men. Contrary to our expectations, the cooling rate was similar in men and women.  相似文献   

12.
The temperature optimum of photosynthesis coincides with the average daytime temperature in a species’ native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO2 assimilation rate (A) under atmospheric conditions was 30–32?°C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO2 concentration was consistent with Rubisco limiting A at ambient CO2. Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63?% reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35?°C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.  相似文献   

13.
Alstroemeria is multiplied in vitro by forced outgrowth of lateral rhizomes from rhizome explants. The multiplication rate is very low because of strong apical dominance and poor rhizome growth. We report here that moderate abiotic stresses stimulate both rhizome growth and outgrowth of lateral rhizomes, and accordingly increase multiplication. Rhizome explants were exposed to heat by a hot-water treatment (HWT) or by a hot-air treatment. Both increased rhizome growth when applied for 1 or 2?h in the range of 30?C40?°C. The maximal enhancement was 75?%. Other abiotic stresses were also examined. Cold (0?°C) and partial anaerobiosis increased rhizome growth significantly. The increases brought about by drought and salinity were not statistically significant. Because underground storage tissues like rhizomes are adaptations to survive climatic stresses, we presume that the increased sink-strength of rhizomes induced by moderate stress is related to stress adaptation. Moderate heat stress (38?°C HWT, 1?h) also resulted in protection of Alstroemeria plantlets from severe heat stress (45?°C HWT, 1?C2?h) a few hours after the moderate stress. All abiotic stresses also increased the outgrowth of lateral rhizomes.  相似文献   

14.
The effect of acute increase in temperature on oxygen partial pressure (Po 2) was measured in the gill arches of Atlantic cod Gadus morhua between 10 and 19° C by use of oxygen microoptodes. Oxygen saturation of the gill blood under control conditions varied between 90 and 15% reflecting a variable percentage of arterial or venous blood in accordance with the position of each optode in the gill arch. The data obtained suggested that arterial Po2 remained more or less constant and arterial oxygen uptake did not become limiting during warming. A progressive drop in venous Po2, however, was observed at >10° C indicating that excessive oxygen uptake from the blood is not fully compensated for by circulatory performance, until finally, Po2 levels fully collapse. In a second set of experiments energy and acid–base status of white muscle of Atlantic cod in vivo was measured by magnetic resonance (31P‐NMR) spectroscopy in unanaesthetized and unimmobilized fish in the temperature range between 13 and 21° C. A decrease in white muscle intracellular pH (pHi) with temperature occurred between 10 and 16° C (ΔpH per ° C = ?0·025 per ° C). In white muscle temperature changes had no influence on high‐energy phosphates such as phosphocreatine (PCr) or ATP except during exposure to high critical temperatures (>16° C), indicating that white muscle energy status appears to be relatively insensitive to thermal stress if compared to the thermal sensitivity of the whole animal. The data were consistent with the hypothesis of an oxygen limitation of thermal tolerance in animals, which is set by limited capacity of oxygen supply mechanisms. In the case of Atlantic cod circulatory rather than ventilatory performance may be the first process to cause oxygen deficiency during heat stress.  相似文献   

15.
The upper critical thermal maximum (CTmax) of metazoans varies over a wide range, and its determinative factors, such as oxygen limitation, remain controversial. Induction of thermoprotective mechanisms after challenge by sublethal heat stress has been well documented in many organisms, including the model fly Drosophila melanogaster. Interestingly, however, other challenges—notably a period of anoxia—induce post-exposure thermoprotective effects in some organisms such as locusts and houseflies. Here I show, using thermolimit respirometry, that acute hypoxia during thermal stress significantly reduced the CTmax of D. melanogaster, but only below an oxygen partial pressure of about 10 kPa (39.0±0.4 SE °C at 9.3 kPa vs. 36.0±0.2 SE °C at 3.5 kPa). Likewise, the scope for voluntary motor activity declined sharply below 10 kPa and was essentially eliminated at 2.3 kPa. Respiratory water loss increased highly significantly below about 10 kPa. The post-CTmax release of a large quantity of CO2 is shown to be independent of loss of spiracular control, but dependent at least in part on oxygen availability. The results are broadly in accord with Pörtner's oxygen limitation hypothesis, but suggest that acute oxygen limitation only becomes an important factor at partial pressures less than half of typical atmospheric levels.  相似文献   

16.
Summary The blood oxygen binding properties and gill secondary lamellar structure of rainbow trout acclimated to several temperatures were studied. The blood oxygen carrying capacity decreased as acclimation temperature increased from 2 to 15 °C; the decrease was probably caused by an increase in plasma volume. Also the blood oxygen affinity decreased as the acclimation temperature increased from 2 to 15 °C. This change had no effect on the oxygen loading in gills, since the efferent arterial oxygen tension was adequate for approximately 100% erythrocytic O2 saturation at all acclimation temperatures, but facilitated the oxygen unloading in tissues. At the highest acclimation temperature (18 °C) the oxygen loading in gills was facilitated by the changes in the secondary lamellar structure; the proportion of erythrocytes in the secondary lamellar capillaries was higher than at the other acclimation temperatures (2 and 10 °C).  相似文献   

17.
In order to study the different physiological bases of cold tolerance in the apical flower buds (AFB) and the lateral flower buds (LFB) of the Hanfu apple (Malus domestica Borkh), we used 4-year-old grafted Hanfu plants as material and evaluated the physiological characteristics of mitochondria in the flower buds, such as electron transport chains (cytochrome pathway and alternative pathway), H2O2 content, mitochondrial membrane permeability transition (mPT), and MDA content. AFBs and LFBs showed different changes in total respiratory rate (Vt) during low-temperature stress, except that both reached the lowest Vts at ?30 °C. The AFB Vt increased to a peak at ?25 °C and decreased sharply to its minimal value at ?30 °C, and then remained relatively low. In contrast, the LFB Vt decreased to its minimal value at ?30 °C and increased sharply to a peak at ?35 °C and then decreased again. In both AFBs and LFBs, the cytochrome pathway was still the main electron transport chain throughout the whole process, and the contributions of the cytochrome pathway (ρVcyt/Vt) and of the alternative pathway (ρValt/Vt) showed similar tendencies to those of Vt as temperature changed. Changes in the AFB mPT were different from those of AFB Vt. LFB mPT zigzagged from peaks at ?25 °C and 35 °C. The H2O2 content of the LFBs increased from ?10 °C to ?30 °C, then decreased slightly from ?30 °C to ?35 °C, and then increased again. H2O2 content in AFBs went up steadily throughout the whole process. During the early stage of low-temperature treatment, before temperatures reached ?35 °C, LFB MDA content remained relatively low and later increased. MDA content in AFBs began to increase from the beginning of treatment. It can be concluded that the higher cold tolerance of LFBs relative to AFBs could be closely related to their higher Vt and ρValt/Vt, which may aid adaptations to stress by supplying energy and metabolic substrates under low-temperature stress conditions.  相似文献   

18.
The effects of environmental temperature on blood pressure and hormones in obese subjects in Japan were compared in two seasons: summer vs winter. Five obese (BMI, 32?±?5 kg/m2) and five non-obese (BMI, 23 ±3 kg/m2) men participated in this experiment at latitude 35°10′ N and longitude 136°57.9′ E. The average environmental temperature was 29?±?1 °C in summer and 3?±?1 °C in winter. Blood samples were analyzed for leptin, ghrelin, catecholamines, thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), total cholesterol, triglycerides, insulin and glucose. Blood pressure was measured over the course of 24 h in summer and winter. A Japanese version of the Profile of Mood States (POMS) questionnaire was also administered each season. Systolic and diastolic blood pressures in obese men were significantly higher in winter (lower environmental temperatures) than in summer (higher environmental temperatures). Noradrenaline and dopamine concentrations were also significantly higher at lower environmental temperatures in obese subjects, but ghrelin, TSH, fT3, fT4, insulin and glucose were not significantly different in summer and winter between obese and non-obese subjects. Leptin, total cholesterol and triglyceride concentrations were significantly higher in winter in obese than non-obese men. Results from the POMS questionnaire showed a significant rise in Confusion at lower environmental temperatures (winter) in obese subjects. In this pilot study, increased blood pressure may have been due to increased secretion of noradrenaline in obese men in winter, and the results suggest that blood pressure control in obese men is particularly important in winter.  相似文献   

19.
Eight healthy young men were studied during three periods of heat exposure in a Finnish sauna bath: at 80 degrees C dry bulb (80 D) and 100 degrees C dry bulb (100 D) temperatures until subjective discomfort, and in 80 degrees C dry heat, becoming humid (80 DH) until subjective exhaustion. Oral temperature increased 1.1 degrees C at 80 D, 1.9 degrees C at 100 D and 3.2 degrees C at 80 DH. Heart rate increased about 60% at 80 D, 90% at 100 D and 130% at 80 DH. Plasma noradrenaline increased about 100% at 80 D, 160% at 100 D and 310% at 80 DH. Adrenaline did not change. Plasma prolactin increased 2-fold at 80 D, 7-fold at 100 D and 10-fold at 80 DH. Blood concentrations of the beta-endorphin immunoreactivity at 100 D, adrenocorticotropic hormone (ACTH) at 100 D and 80 DH, growth hormone at 100 D and testosterone at 80 DH also increased, but cortisol at 80 D and 100 D decreased. The plasma prostaglandin E2 and serum thromboxane B2 levels did not change. Patterns related to heat exposure were observed for heart rate, plasma noradrenaline, ACTH and prolactin in the three study periods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号