首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we prepared dimeric dipeptide mimetics of the first and the fourth loops of the nerve growth factor (NGF): hexamethylenediamides of bis(N-aminocaproyl-glycyl-L-lysine) (GK-6) and bis(N-monosuccinyl-L-glutamyl-L-lysine) (GK-2). Both mimetics activated TrkA-receptors, but induced different postreceptor signal pathways. GK-2 selectively activated PI3K/AKT, whereas GK-6 activated both PI3K/AKT and MAPK/ERK. Both mimetics exhibited a neuroprotective activity. In this study, we continued the investigation of a contribution of separate loop-like structures in the NGF functions and created and studied dimeric dipeptide mimetics based on a beta-turn of the NGF third loop: hexamethylenediamides of bis(N-gamma-hydroxybutyryl-L-lysyl-L-histidine) (GTS-115) and bis(N-acetyl-L-lysyl-L-histidine) (GTS-113). GTS-115 was shown to exhibit the neuroprotective activity in the concentration range from 10–5 to 10–7 М towards the HT-22 cell culture under the conditions of oxidative stress. The acetyl-containing GTS-113 mimetic proved to be inactive. GTS-115 (1 mg/kg/day intraperitoneally, for 7 days, the administration was started 4 h after the operation) exhibited the neuroprotective properties and decreased the infarction volume by 25% on the model of a stroke that was induced by a transient occlusion of the medial cerebral artery of rats. The action mechanism of GTS-115 was studied by Western-blot analysis and this mimetic in a concentration of 10–6 М was shown to activate the TrkA-receptor and both MAPK/ERK and PI3K/AKT basic postreceptor signal pathways. The inhibitory analysis revealed different contributions of these pathways into the GTS-115 neuroprotective effect. The LY294002 selective inhibitor of PI3K completely blocked the neuroprotective effect of GTS-115 in vitro, whereas the PD98059 specific inhibitor of MEK1 and MEK2 decreased this effect only by 10–15%. GTS-115 peptide stimulated a differentiation of the PC12 cells and caused a hyperalgesia in rats. These facts were in a good agreement with the literature data on the participation of the MAP-kinase pathway in these effects. Thus, the third NGF loop and the neighboring first NGF loop activated the postreceptor pathways in a similar way and exhibited the similar activities.  相似文献   

2.
3.
It is generally believed that the mechanism of action of neurotrophic factors involves uptake of neurotrophic factor by nerve terminals and retrograde transport through the axon and back to the cell body where the factor exerts its neurotrophic effect. This view originated with the observation almost 20 years ago that nerve growth factor (NGF) is retrogradely transported by sympathetic axons, arriving intact at the neuronal cell bodies in sympathetic ganglia. However, experiments using compartmented cultures of rat sympathetic neurons have shown that neurite growth is a local response of neurites to NGF locally applied to them which does not directly involve mechanisms in the cell body. Recently, several NGF-related neurotrophins have been identified, and several unrelated molecules have been shown to act as neurotrophic or differentiation factors for a variety of types of neurons in the peripheral and central nervous systems. It has become clear that knowledge of the mechanisms of action of these factors will be crucial to understanding neurodegenerative diseases and the development of treatments as well as the means to repair or minimize neuronal damage after spinal injury. The concepts derived from work with NGF suggest that the site of exposure of a neuron to a neurotrophic factor is important in determining its response. 1994 John Wiley & Sons, Inc.  相似文献   

4.
Nerve growth factor (NGF) acts through its receptor, TrkA, to elicit the neuronal differentiation of PC12 cells through the action of extracellular signal-regulated kinase 1 (ERK1) and ERK2. Upon NGF binding, TrkA translocates and concentrates in cholesterol-rich membrane microdomains or lipid rafts, facilitating formation of receptor-associated signaling complexes, activation of downstream signaling pathways, and internalization into endosomes. We have investigated the mechanisms responsible for the localization of TrkA within lipid rafts and its ability to activate ERK1 and ERK2. We report that NGF treatment results in the translocation of activated forms of TrkA to lipid rafts, and this localization is important for efficient activation of the ERKs. TrkA is recruited and retained within lipid rafts through its association with flotillin, an intrinsic constituent of these membrane microdomains, via the adapter protein, c-Cbl associated protein (CAP). Mutant forms of CAP that lack protein interaction domains block TrkA localization to lipid rafts and attenuate ERK activation. Importantly, suppression of endogenous CAP expression inhibited NGF-stimulated neurite outgrowth from primary dorsal root ganglion neurons. These data provide a mechanism for the lipid raft localization of TrkA and establish the importance of the CAP adaptor protein for NGF activation of the ERKs and neuronal differentiation.  相似文献   

5.
Experiments were conducted using female golden hamsters to identify the presence of nerve growth factor (NGF) and its receptors NTRK1 and TNFRSF1B in the uteri of female animals and regulation on their expression by estrogen and progesterone. NGF and its receptor NTRK1 were immunolocalized to luminal epithelial cells, glandular cells, and stromal cells. TNFRSF1B was immunolocalized in luminal epithelial and glandular cells, with no staining found in stromal cells of the uterine horns of normal cyclic golden hamsters. Strong immunostaining of NGF and its receptors NTRK1 and TNFRSF1B was observed in uteri on the day of proestrus as compared to the other stages of the estrous cycle. Results of immunoblot analysis of NGF revealed that there was a positive correlation between uterine NGF expression and plasma concentrations of estradiol-17beta. To clarify the effects of estrogen and progesterone on NGF, NTRK1, and TNFRSF1B expression, adult female golden hamsters were ovariectomized and treated with estradiol-17beta and/or progesterone. Immunoblot analysis and immunohistochemistry indicated that estradiol-17beta stimulated expression of NGF and its two receptors in the uterus. Treatment with progesterone also increased NGF and NTRK1 expression in the uterus. However, no additive effect of these steroids on expression of NGF and its receptors was observed. Changes in uterine weights induced by estradiol-17beta and/or progesterone showed the same profile with that of NGF, suggesting that a proliferative act of NGF may be involved in uterine growth. These results suggest that NGF may play important roles in action of steroids on uterine function.  相似文献   

6.
Sympathetic nervous system (SNS) plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF) and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts) isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of cardiac sympathetic innervation and neurocardiac synapse stability. They also suggest that neurocardiac synapse functionality relies on a triptych with tight interaction between sympathetic nerve endings, cardiomyocytes and fibroblasts. Deregulations of this triptych may be involved in pathophysiology of cardiac diseases.  相似文献   

7.
We employed a series of inhibitors of intracellular cascade to disclose the precise molecular mechanisms by which basic fibroblast growth factor (bFGF) promotes viability of PC12 cells and compared with nerve growth factor (NGF) and epidermal growth factor (EGF). The MEK 1 and 2 inhibitors, U0126 and PD98059, significantly suppressed cell viability mediated by bFGF in a dose-dependent manner, and to a greater extent compared with EGF and NGF. The degree of MEK dependency for growth factor-mediated cell viability was estimated to be in the order of bFGF, EGF, and NGF. Rapamycin strongly inhibited the effect of NGF on cell viability, compared with bFGF and EGF. The mechanisms of action of NGF-mediated cell viability may depend largely on p70 S6 kinase-related signal transduction pathways comparing to bFGF and EGF. The present findings suggest that different signal transduction systems may be involved in the molecular mechanisms by which bFGF, NGF, and EGF mediate cell viability.  相似文献   

8.
Muramyl dipeptide and its synthetic derivative N-acetyl-glucosaminyl-N-acetyl-muramyl-alanyl - D-isoglutamine induce mitogenic factor production for Con A activated blasts (Con A-blasts) in splenocytes. The maximal factor production was revealed 24 h after stimulation with muramyl dipeptide or its derivative. Addition of the inducers to the culture of Con A-blasts led but to the negligible proliferative response. Therefore, the mitogenic action of muramyl dipeptide on target cells is mediated by the growth factor, evidently by interleukin-2. It has been also shown that muramyl dipeptide and its derivative with Con A exerted a synergic action in interleukin-2 induction.  相似文献   

9.
一组人工合成抗菌肽的研究   总被引:9,自引:0,他引:9  
Cecropin A1是一种从惜古比天蚕(Hyalophora cecropia)中提取的由37个氨基酸组成的一种α-螺旋抗菌肽,其杀菌活性较弱。本文采用了cecropin A1的N端1-8序列KWKLFKKI,另加一段标准的α-螺旋结构序列,然后用一个铰链结构GIG相连,合成了15条抗菌肽。经过试验证明部分含有核心标准螺旋结构的序列,对革兰氏阳性菌和阴性菌的最小抑菌浓度仅是原有cecropin A1抗菌肽的1/100左右。该类抗菌肽有希望进一步开发为新的抗感染药物。该类抗菌肽已经申请专利,专利号为PCT/CN 03/00522。  相似文献   

10.
Nerve growth factor (NGF) and epidermal growth factor (EGF) produce stable alterations in PC12 cells that persist in the detergent-insoluble cytoskeleton, resulting in the phosphorylation of a 250,000-mol-wt cytoskeletally associated protein in situ. Treatment of PC12 cells with NGF or EGF, followed by detergent lysis of the cells and incubation of the resulting cytoskeletons with gamma-32P-ATP, permitted detection of hormonally stimulated, energy-dependent events, which result in the enhanced phosphorylation of a cytoskeletally associated protein as an immediate consequence of receptor occupancy. These events were elicited only upon treatment of intact cells at physiological temperatures. The NGF- and EGF-stimulated events occurred rapidly; however, they were a transient effect of hormone action. NGF and EGF were found to act through independent mechanisms to stimulate the in situ phosphorylation of the 250,000-mol-wt protein, as the effects of NGF, but not EGF, were blocked by methyltransferase inhibitors. The 250,000-mol-wt protein was phosphorylated on serine and threonine residues in response to both NGF and EGF although in somewhat different proportions. The data suggest that the hormone-stimulated labeling of the 250,000-mol-wt protein may be the result of either the direct activation of a protein kinase, the redistribution of the kinase relative to its substrates as a consequence of hormone action, or the coincident occurrence of these events.  相似文献   

11.
Nerve growth factor (NGF) is likely to exert its trophic action on dorsal root ganglion (DRG) and on sympathetic ganglion neurons by controlling a crucial function of these cells. This function would in turn regulate other cellular machineries and, ultimately, lead to the traditional NGF consequences, such as survival and neuritic growth. A corollary of this view is that the key to NGF action must lie in short-latency events, occurring within minutes of NGF administration. Chick embryo DRG dissociates have proved to be an effective experimental system to investigate short-latency responses to NGF, in that (1) measurable functional deficits develop over 6 h of NGF deprivation in vitro and (2) delayed presentation of NGF promptly and fully restores the defective function. The first deficit observed in this experimental system, a decline in RNA-labeling capability, led to the recognition that NGF controls the transport of selected exogenous substrates, all of which are Na+-coupled and depend on an Na+ gradient across the neuronal membrane. Subsequent work showed that NGF controlled such transport systems by actually regulating the neuronal ability to control intracellular Na+. Under NGF deprivation, the DRG cells accumulate Na+ to levels that reflect, and presumably equate, the extracellular Na+ concentrations. Conversely, on delayed NGF administration, the accumulated Na+ is actively extruded to an extent and at a speed that depends on the NGF concentration. The Na+ response is elicited by both Beta and 7S NGF, but not by other proteins tested. All ganglionic systems that display a requirement for exogenous NGF in culture have also displayed the Na+ response to NGF. The Na+ response is grossly paralleled by a K+ response. DRG dissociates, in which intracellular K+ has been pre-equilibrated with extracellular 86Rb+, lose their 86Rb+ over 6 h of NGF deprivation and restore it on delayed NGF administration. The regulation by NGF of mechanisms controlling intracellular Na+ and K+ levels in their target neurons is likely to occupy an early and fundamentl place in the sequence of events underlying the mode of action of this factor.  相似文献   

12.
Quantification of changes in levels of c-fos RNA was used as an indicator of the presence of functional responses to nerve growth factor in several human non-neuronal cell lines which have previously been shown to express high levels of NGF receptors. Four Ewing's sarcomas, one Wilm's tumor, and one melanoma were examined. Of these cell lines, the Ewing's sarcoma IARC-EW1 showed greatly increased levels (10-20-fold) of c-fos RNA after 1 hour of exposure to NGF. Except for the melanoma line, the other tumor lines exhibited small, but reproducible, elevation of c-fos RNA expression. In IARC-EW1 cells, this induction was analyzed for kinetics, dose-response, and suppression by selective inhibitors of NGF action. The results indicate that these cells bear high-affinity receptors for NGF, which utilize signal pathways similar to NGF receptors on PC12 cells. Thus, we report new types of cells with functional responses to NGF and indicate that these may constitute a new model which will usefully complement those presently used for studying the mechanism of action of NGF.  相似文献   

13.
The incorporation of radioactive precursors into gangliosides and other glycolipids, glycoproteins, and total lipids has been studied in rat pheochromocytoma PC12 cells. Starting with the same PC12 cell pool, cultures displaying different degrees of neuritic expression in response to nerve growth factor (NGF) and combinations of serum ganglioside GM1 were produced. Attempts were then made to correlate neuritic regulation with biochemical performances of these cells. NGF stimulates the incorporation of [3H]galactose into gangliosides and other glycolipids and glycoproteins and [14C]acetate into total lipids, regardless of the serum concentration. NGF both increased their initial labeling rates and promoted additional and more extensive labeling from culture day 4 onward. Unexpectedly, exogenous GM1 also elicited an increase in ganglioside labeling as well as that of the other lipid classes, but not of glycoproteins. The GM1-induced increase was evident at higher serum concentrations (1%) regardless of the presence or absence of NGF, but not apparent in low (0.15%) serum. Serum levels themselves did not affect labeling patterns in the absence of NGF and GM1. GM1-induced stimulation of labeling reflects an increase in the synthetic activities of the cells, and not increased precursor uptake or reduced product degradation. For all constituents stimulated by GM1, concurrent treatment with NGF produces cumulative effects, suggesting independent mechanisms of action by the two molecules.  相似文献   

14.
Prior exposure (15 min at 37 degrees C) of several cell types (Vero, SH-SY5Y neuroblastoma, human intestinal epithelial T84) to 3 mm N-benzoyloxycarbonyl-Gly-Phe-amide (Cbz-Gly-Phe-NH(2)), a competitive substrate for metalloendoproteases, completely suppressed cholera toxin (CT)-induced intracellular cAMP accumulation. The specificity of the inhibitory effect was demonstrated by the complete lack of effect of the dipeptide Cbz-Gly-Gly-NH(2), an inactive analogue of Cbz-Gly-Phe-NH(2). The effect was reversible and dose- (IC(50) as low as 0.2 mm depending on the cell type) and time-dependent. Adding Cbz-Gly-Phe-NH(2) during the lag phase caused a diminution of its inhibitory effect similar to that observed with brefeldin A (BFA). Whereas the dipeptide completely suppressed the CT-induced adenylate cyclase (AC) activity, a direct effect on AC is unlikely since the elevation of intracellular cAMP by forskolin was only slightly reduced. The A(1) peptide of CT and NAD(+) activated the AC to the same extent in membranes from control and Cbz-Gly-Phe-NH(2)-treated cells or when Cbz-Gly-Phe-NH(2) was added directly to the assay. The inhibitory effects of suboptimal amounts of Cbz-Gly-Phe-NH(2) and BFA were not additive pointing to a similar mode of action of the two substances. However, Madin-Darby canine kidney cells of which the Golgi structure is BFA-resistant were not resistant to the inhibitory action of Cbz-Gly-Phe-NH(2) on CT cytotoxicity. Several lines of evidence indicate that a perturbation of intracellular Ca(2+) homeostasis by Cbz-Gly-Phe-NH(2) is not responsible for the inhibitory effect of the dipeptide. The dipeptide had also no effect on the binding of (125)I-CT to cells and even increased its intracellular internalization. In contrast with BFA, Cbz-Gly-Phe-NH(2) did not completely suppress the formation of the catalytically active A(1) fragment from bound CT. The data are compatible with a role of metalloendoprotease activity in the intracellular trafficking and processing of CT, although other mechanisms of action of Cbz-Gly-Phe-NH(2) cannot be excluded.  相似文献   

15.
16.
M J Radeke  S C Feinstein 《Neuron》1991,7(1):141-150
Although nerve growth factor (NGF) action is mediated by the slow, high affinity NGF receptor, little is known regarding its molecular composition or mode of action. We have used reversible chemical cross-linkers and affinity chromatography strategies to purify the slow NGF receptor covalently cross-linked to its NGF ligand. Subsequent uncoupling of the cross-links reveals that the receptor-ligand complex is composed of only a novel 135 kd polypeptide interacting with NGF. The previously characterized 85 kd fast, low affinity NGF receptor is not a component of the cross-linked slow receptor-ligand complex. This newly identified 135 kd polypeptide is either the entire slow NGF receptor, or it might be one component of a larger, multisubunit slow NGF holo-receptor.  相似文献   

17.
From many recent studies, it has been argued that keratins (cytokeratins) play important roles in the morphogenesis and differentiation of organ development. To learn the role of keratin in digestive tract development, a cDNA of the chicken homolog of keratin-19 ( GK-19 ) was cloned and its expression pattern was analyzed in the digestive tract of chicken embryos. The GK-19 full-length sequence was approximately 1.6 kb and showed more than 80% similarity to human and mouse keratin-19. The result of in situ hybridization with the proventriculus (glandular stomach) of different developmental stages showed that GK-19 expression disappeared specifically in the glandular epithelium from day 6 to day 9 of incubation. Furthermore, GK-19 was localized in the notochord, floor plate, anterior lobe of the pituitary gland and mesonephros. These results suggest the possibility that GK-19 may have multiple roles in organogenesis during embryogenesis.  相似文献   

18.
Gao  Wansheng  Yang  Han  Xu  Le  Huang  Wenbo  Yang  Yanfeng 《Neurochemical research》2021,46(11):2897-2908

FK1706 is a novel non-immunosuppressive immunophilin ligand with neurotrophic activity and exerts its neurotrophic effect through NGF. The present study aimed to elaborate on the neurotrophic activity and the mechanism of action of FK1706 in end-to-side neurorrhaphy rats and SH-SY5Y cells. In the regenerating nerves of neurorrhaphy rats, FK1706 increased the thickness of myelin sheath and the level of nerve regeneration-related proteins. The mechanism of action of FK1706 on neurite regrowth was elucidated in vitro by incubating SH-SY5Y cells in different conditions (Control, NGF, FK1706, NGF?+?FK1706, NGF?+?FK1706?+?geldanamycin). Under the conditions where NGF was used, the phosphorylation level of major proteins (Raf-1 and ERK) in the Ras/Raf/MAPK/ERK signaling pathway related to SH-SY5Y cell proliferation was significantly enhanced following the application of FK1706. The number of viable cells, cell viability and neurite length of SH-SY5Y cells was maximal when NGF and FK1706 were used simultaneously. The binding level of HSP90 and Raf-1 in FK1706 group was the highest. These results indicated that FK1706 could significantly promote nerve regeneration after neurorrhaphy. The putative mechanism of action stated that FK1706 could promote the binding of HSP90 and Raf-1, make Raf-1 continue to be activated, thereby affecting key proteins in the Ras/Raf/MAPK/ERK signaling pathway related to the neurotrophic effects of NGF to promote the proliferation and neurite regrowth of nerve cells.

  相似文献   

19.
1. The paravertebral sympathetic ganglion of the bullfrog serves as an excellent experimental system in which to study the response of vertebrate neurones to axotomy and the mechanisms associated with regeneration. 2. Various types of lesions to the axons (axotomy) of these neurones promote distinct and reproducible changes in the electrophysiological properties of the cell bodies which are not a consequence of changes in cell body morphology. 3. The axotomy-induced increase in spike width and decrease in the amplitude of the action potential after-hyperpolarization may allow an increase in Ca2+ influx and thereby promote regrowth. 4. The axotomy-induced decrease in after-hyperpolarization duration may reflect the disconnection of the neurone with its target and the loss of available nerve growth factor (NGF) from the target. 5. Experiments with NGF antibodies provide evidence that an NGF-like substances serves to maintain the normal electrophysiological characteristics of amphibian sympathetic neurones.  相似文献   

20.
To explore the molecular mechanisms of nerve growth factor (NGF) action, we have attempted to identify proteins that immunoprecipitate with the NGF receptor. An anti-NGF receptor antibody was developed that immunoprecipitated the 75-Kd receptor in PC-12 cells. In [35S]methionine-labeled cells lysed with nonionic detergent, immunoprecipitation with this antireceptor antisera specifically brought down several associated proteins, although prior treatment of cells with NGF produced no apparent change in the distribution of these proteins. However, in vitro phosphorylation assays of the immunoprecipitated complex revealed the presence of a serine kinase that phosphorylated two predominant substrates with Mrs of 60 and 130 Kd. Prior treatment of cells produced no change in the appearance of the 60-Kd phosphoprotein, but NGF did stimulate the appearance of the 130-Kd protein. This effect was observed with as little as 0.1 nM NGF and was maximal at 5 min, but declined thereafter. Prior treatment of cells with NGF did not increase the phosphorylation of enolase added exogenously to the immunoprecipitates, suggesting that this action of NGF may have reflected the hormone-dependent association of the 130-Kd protein with the receptor, rather than activation of a receptor-associated kinase. Thus the association of the NGF 75-Kd receptor with a 130-Kd protein may be involved in signal transduction for the growth factor, although the role of this receptor in the NGF-dependent tyrosine phosphorylation remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号