首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach.  相似文献   

2.

Background  

Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs) contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures.  相似文献   

3.
The modification of cellular metabolism is of biotechnological and commercial significance because naturally occurring metabolic pathways are the source of diverse compounds used in fields ranging from medicine to bioremediation. Directed evolution is the experimental improvement of biocatalysts or cellular properties through iterative genetic diversification and selection procedures. The creation of novel metabolic functions without disrupting the balanced intracellular pool of metabolites is the primary challenge of pathway manipulation. The introduction of coordinated changes across multiple genetic elements, in conjunction with functional selection, presents an integrated approach for the modification of metabolism with benign physiological consequences. Directed evolution formats take advantage of the dynamic structures of genomes and genomic sub-structures and their ability to evolve in multiple directions in response to external stimuli. The elucidation, design and application of genome-restructuring mechanisms are key elements in the directed evolution of cellular metabolic pathways.  相似文献   

4.
5.

Background  

This paper considers the problem of identifying pathways through metabolic networks that relate to a specific biological response. Our proposed model, HME3M, first identifies frequently traversed network paths using a Markov mixture model. Then by employing a hierarchical mixture of experts, separate classifiers are built using information specific to each path and combined into an ensemble prediction for the response.  相似文献   

6.
We develop a mathematical model that explicitly represents many of the known signaling components mediating translocation of the insulin-responsive glucose transporter GLUT4 to gain insight into the complexities of metabolic insulin signaling pathways. A novel mechanistic model of postreceptor events including phosphorylation of insulin receptor substrate-1, activation of phosphatidylinositol 3-kinase, and subsequent activation of downstream kinases Akt and protein kinase C-zeta is coupled with previously validated subsystem models of insulin receptor binding, receptor recycling, and GLUT4 translocation. A system of differential equations is defined by the structure of the model. Rate constants and model parameters are constrained by published experimental data. Model simulations of insulin dose-response experiments agree with published experimental data and also generate expected qualitative behaviors such as sequential signal amplification and increased sensitivity of downstream components. We examined the consequences of incorporating feedback pathways as well as representing pathological conditions, such as increased levels of protein tyrosine phosphatases, to illustrate the utility of our model for exploring molecular mechanisms. We conclude that mathematical modeling of signal transduction pathways is a useful approach for gaining insight into the complexities of metabolic insulin signaling.  相似文献   

7.
The adaptive significance of enzyme variation has been of central interest in population genetics. Yet, how natural selection operates on enzymes in the larger context of biochemical pathways has not been broadly explored. A basic expectation is that natural selection on metabolic phenotypes will target enzymes that control metabolic flux, but how adaptive variation is distributed among enzymes in metabolic networks is poorly understood. Here, we use population genetic methods to identify enzymes responding to adaptive selection in the pathways of central metabolism in Drosophila melanogaster and Drosophila simulans. We report polymorphism and divergence data for 17 genes that encode enzymes of 5 metabolic pathways that converge at glucose-6-phosphate (G6P). Deviations from neutral expectations were observed at five loci. Of the 10 genes that encode the enzymes of glycolysis, only aldolase (Ald) deviated from neutrality. The other 4 genes that were inconsistent with neutral evolution (glucose-6-phosphate dehydrogenase [G6pd]), phosphoglucomutase [Pgm], trehalose-6-phosphate synthetase [Tps1], and glucose-6phosphatase [G6pase] encode G6P branch point enzymes that catalyze reactions at the entry point to the pentose-phosphate, glycogenic, trehalose synthesis, and gluconeogenic pathways. We reconcile these results with population genetics theory and existing arguments on metabolic regulation and propose that the incidence of adaptive selection in this system is related to the distribution of flux control. The data suggest that adaptive evolution of G6P branch point enzymes may have special significance in metabolic adaptation.  相似文献   

8.
9.
An approach is presented for computing meaningful pathways in the network of small molecule metabolism comprising the chemical reactions characterized in all organisms. The metabolic network is described as a weighted graph in which all the compounds are included, but each compound is assigned a weight equal to the number of reactions in which it participates. Path finding is performed in this graph by searching for one or more paths with lowest weight. Performance is evaluated systematically by computing paths between the first and last reactions in annotated metabolic pathways, and comparing the intermediate reactions in the computed pathways to those in the annotated ones. For the sake of comparison, paths are computed also in the un-weighted raw (all compounds and reactions) and filtered (highly connected pool metabolites removed) metabolic graphs, respectively. The correspondence between the computed and annotated pathways is very poor (<30%) in the raw graph; increasing to approximately 65% in the filtered graph; reaching approximately 85% in the weighted graph. Considering the best-matching path among the five lightest paths increases the correspondence to 92%, on average. We then show that the average distance between pairs of metabolites is significantly larger in the weighted graph than in the raw unfiltered graph, suggesting that the small-world properties previously reported for metabolic networks probably result from irrelevant shortcuts through pool metabolites. In addition, we provide evidence that the length of the shortest path in the weighted graph represents a valid measure of the "metabolic distance" between enzymes. We suggest that the success of our simplistic approach is rooted in the high degree of specificity of the reactions in metabolic pathways, presumably reflecting thermodynamic constraints operating in these pathways. We expect our approach to find useful applications in inferring metabolic pathways in newly sequenced genomes.  相似文献   

10.
Benzoxazinoids are secondary metabolites that are effective in defence and allelopathy. They are synthesised in two subfamilies of the Poaceae and sporadically found in single species of the dicots. The biosynthesis is fully elucidated in maize; here the genes encoding the enzymes of the pathway are in physical proximity. This “biosynthetic cluster” might facilitate coordinated gene regulation. Data from Zea mays, Triticum aestivum and Hordeum lechleri suggest that the pathway is of monophyletic origin in the Poaceae. The branchpoint from the primary metabolism (Bx1 gene) can be traced back to duplication and functionalisation of the alpha-subunit of tryptophan synthase (TSA). Modification of the intermediates by consecutive hydroxylation is catalysed by members of a cytochrome P450 enzyme subfamily (Bx2Bx5). Glucosylation by an UDP-glucosyltransferase (UGT, Bx8, Bx9) is essential for the reduction of autotoxicity of the benzoxazinoids. In some species 2,4-dihydroxy-1,4-benzoxazin-3-one-glucoside (DIBOA-glc) is further modified by the 2-oxoglutarate-dependent dioxygenase BX6 and the O-methyltransferase BX7. In the dicots Aphelandra squarrosa, Consolida orientalis, and Lamium galeobdolon, benzoxazinoid biosynthesis is analogously organised: The branchpoint is established by a homolog of TSA, P450 enzymes catalyse hydroxylations and at least the first hydroxylation reaction is identical in dicots and Poaceae, the toxic aglucon is glucosylated by an UGT. Functionally, TSA and BX1 are indole-glycerolphosphate lyases (IGLs). Igl genes seem to be generally duplicated in angiosperms. Modelling and biochemical characterisation of IGLs reveal that the catalytic properties of the enzyme can easily be modified by mutation. Independent evolution can be assumed for the BX1 function in dicots and Poaceae.  相似文献   

11.

Background  

Gene regulation and metabolic reactions are two primary activities of life. Although many works have been dedicated to study each system, the coupling between them is less well understood. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions.  相似文献   

12.
We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.  相似文献   

13.
The evolution of connectivity in metabolic networks   总被引:2,自引:1,他引:2  
Processes in living cells are the result of interactions between biochemical compounds in highly complex biochemical networks. It is a major challenge in biology to understand causes and consequences of the specific design of these networks. A characteristic design feature of metabolic networks is the presence of hub metabolites such as ATP or NADH that are involved in a high number of reactions. To study the emergence of hub metabolites, we implemented computer simulations of a widely accepted scenario for the evolution of metabolic networks. Our simulations indicate that metabolic networks with a large number of highly specialized enzymes may evolve from a few multifunctional enzymes. During this process, enzymes duplicate and specialize, leading to a loss of biochemical reactions and intermediary metabolites. Complex features of metabolic networks such as the presence of hubs may result from selection of growth rate if essential biochemical mechanisms are considered. Specifically, our simulations indicate that group transfer reactions are essential for the emergence of hubs.  相似文献   

14.
A set of linear pathways often does not capture the full range of behaviors of a metabolic network. The concept of 'elementary flux modes' provides a mathematical tool to define and comprehensively describe all metabolic routes that are both stoichiometrically and thermodynamically feasible for a group of enzymes. We have used this concept to analyze the interplay between the pentose phosphate pathway (PPP) and glycolysis. The set of elementary modes for this system involves conventional glycolysis, a futile cycle, all the modes of PPP function described in biochemistry textbooks, and additional modes that are a priori equally entitled to pathway status. Applications include maximizing product yield in amino acid and antibiotic synthesis, reconstruction and consistency checks of metabolism from genome data, analysis of enzyme deficiencies, and drug target identification in metabolic networks.  相似文献   

15.
There is growing interest in the evolutionary dynamics of molecular genetic pathways and networks, and the extent to which the molecular evolution of a gene depends on its position within a pathway or network, as well as over-all network topology. Investigations on the relationships between network organization, topological architecture and evolutionary dynamics provide intriguing hints as to how networks evolve. Recent studies also suggest that genetic pathway and network structures may influence the action of evolutionary forces, and may play a role in maintaining phenotypic robustness in organisms.  相似文献   

16.
The nonconventional yeast Issatchenkia orientalis can grow under highly acidic conditions and has been explored for production of various organic acids. However, its broader application is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. We recently constructed an episomal plasmid based on the autonomously replicating sequence (ARS) from Saccharomyces cerevisiae (ScARS) in I. orientalis and developed a CRISPR/Cas9 system for multiplexed gene deletions. Here we report three additional genetic tools including: (1) identification of a 0.8 kb centromere-like (CEN-L) sequence from the I. orientalis genome by using bioinformatics and functional screening; (2) discovery and characterization of a set of constitutive promoters and terminators under different culture conditions by using RNA-Seq analysis and a fluorescent reporter; and (3) development of a rapid and efficient in vivo DNA assembly method in I. orientalis, which exhibited ~100% fidelity when assembling a 7 kb-plasmid from seven DNA fragments ranging from 0.7 kb to 1.7 kb. As proof of concept, we used these genetic tools to rapidly construct a functional xylose utilization pathway in I. orientalis.  相似文献   

17.
Interactions between the structure of a metabolic network and its functional properties underlie its evolutionary diversification, but the mechanism by which such interactions arise remains elusive. Particularly unclear is whether metabolic fluxes that determine the concentrations of compounds produced by a metabolic network, are causally linked to a network's structure or emerge independently of it. A direct empirical study of populations where both structural and functional properties vary among individuals’ metabolic networks is required to establish whether changes in structure affect the distribution of metabolic flux. In a population of house finches (Haemorhous mexicanus), we reconstructed full carotenoid metabolic networks for 442 individuals and uncovered 11 structural variants of this network with different compounds and reactions. We examined the consequences of this structural diversity for the concentrations of plumage‐bound carotenoids produced by flux in these networks. We found that concentrations of metabolically derived, but not dietary carotenoids, depended on network structure. Flux was partitioned similarly among compounds in individuals of the same network structure: within each network, compound concentrations were closely correlated. The highest among‐individual variation in flux occurred in networks with the strongest among‐compound correlations, suggesting that changes in the magnitude, but not the distribution of flux, underlie individual differences in compound concentrations on a static network structure. These findings indicate that the distribution of flux in carotenoid metabolism closely follows network structure. Thus, evolutionary diversification and local adaptations in carotenoid metabolism may depend more on the gain or loss of enzymatic reactions than on changes in flux within a network structure.  相似文献   

18.
19.
Understanding the relationships between the structure (topology) and function of biological networks is a central question of systems biology. The idea that topology is a major determinant of systems function has become an attractive and highly disputed hypothesis. Although structural analysis of interaction networks demonstrates a correlation between the topological properties of a node (protein, gene) in the network and its functional essentiality, the analysis of metabolic networks fails to find such correlations. In contrast, approaches utilizing both the topology and biochemical parameters of metabolic networks, e.g., flux balance analysis, are more successful in predicting phenotypes of knockout strains. We reconcile these seemingly conflicting results by showing that the topology of the metabolic networks of both Escherichia coli and Saccharomyces cerevisiae are, in fact, sufficient to predict the viability of knockout strains with accuracy comparable to flux balance analysis on large, unbiased mutant data sets. This surprising result is obtained by introducing a novel topology-based measure of network transport: synthetic accessibility. We also show that other popular topology-based characteristics such as node degree, graph diameter, and node usage (betweenness) fail to predict the viability of E. coli mutant strains. The success of synthetic accessibility demonstrates its ability to capture the essential properties of the metabolic network, such as the branching of chemical reactions and the directed transport of material from inputs to outputs. Our results strongly support a link between the topology and function of biological networks and, in agreement with recent genetic studies, emphasize the minimal role of flux rerouting in providing robustness of mutant strains.  相似文献   

20.
Inferring qualitative relations in genetic networks and metabolic pathways   总被引:8,自引:0,他引:8  
MOTIVATION: Inferring genetic network architecture from time series data of gene expression patterns is an important topic in bioinformatics. Although inference algorithms based on the Boolean network were proposed, the Boolean network was not sufficient as a model of a genetic network. RESULTS: First, a Boolean network model with noise is proposed, together with an inference algorithm for it. Next, a qualitative network model is proposed, in which regulation rules are represented as qualitative rules and embedded in the network structure. Algorithms are also presented for inferring qualitative relations from time series data. Then, an algorithm for inferring S-systems (synergistic and saturable systems) from time series data is presented, where S-systems are based on a particular kind of nonlinear differential equation and have been applied to the analysis of various biological systems. Theoretical results are shown for Boolean networks with noises and simple qualitative networks. Computational results are shown for Boolean networks with noises and S-systems, where real data are not used because the proposed models are still conceptual and the quantity and quality of currently available data are not enough for the application of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号