首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The dual-specificity mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) inactivates MAP kinases by dephosphorylation. Here we show that the proinflammatory cytokine interleukin (IL)-17A induces adult mouse primary cardiac fibroblast (CF) proliferation and migration via IL-17 receptor A//IL-17 receptor C-dependent MKP-1 suppression, and activation of p38 MAPK and ERK1/2. IL-17A mediated p38 MAPK and ERK1/2 activation is inhibited by MKP-1 overexpression, but prolonged by MKP-1 knockdown. IL-17A induced miR-101 expression via PI3K/Akt, and miR-101 inhibitor reversed MKP-1 down regulation. Importantly, MKP-1 knockdown, pharmacological inhibition of p38 MAPK and ERK1/2, or overexpression of dominant negative MEK1, each markedly attenuated IL-17A-mediated CF proliferation and migration. Similarly, IL-17F and IL-17A/F heterodimer that also signal via IL-17RA/IL-17RC, stimulated CF proliferation and migration. These results indicate that IL-17A stimulates CF proliferation and migration via Akt/miR-101/MKP-1-dependent p38 MAPK and ERK1/2 activation. These studies support a potential role for IL-17 in cardiac fibrosis and adverse myocardial remodeling.  相似文献   

3.
Mitogen-activated protein (MAP) kinases play a pivotal role in the macrophages in the production of proinflammatory cytokines triggered by lipopolysaccharides. However, their function in the responses of macrophages to Gram-positive bacteria is poorly understood. Even less is known about the attenuation of MAP kinase signaling in macrophages exposed to Gram-positive bacteria. In the present study, we have investigated the regulation of MAP kinases and the role of MAP kinase phosphatase (MKP)-1 in the production of pro-inflammatory cytokines using murine RAW264.7 and primary peritoneal macrophages after peptidoglycan stimulation. Treatment of macrophages with peptidoglycan resulted in a transient activation of JNK, p38, and extracellular signal-regulated kinase. Most interestingly, MKP-1 expression was potently induced by peptidoglycan, and this induction was concurrent with MAP kinase dephosphorylation. Triptolide, a diterpenoid triepoxide, potently blocked the induction of MKP-1 by peptidoglycan and prolonged the activation of JNK and p38. Overexpression of MKP-1 substantially attenuated the production of tumor necrosis factor (TNF)-alpha induced by peptidoglycan, whereas knockdown of MKP-1 by small interfering RNA substantially increased the production of both TNF-alpha and interleukin-1 beta. Finally, we found that in primary murine peritoneal macrophages, MKP-1 induction following peptidoglycan stimulation also coincided with inactivation of JNK and p38. Blockade of MKP-1 induction resulted in a sustained activation of both JNK and p38 in primary macrophages. Our results reveal that MKP-1 critically regulates the expression of TNF-alpha and interleukin-1 beta in RAW264.7 cells and further suggest a central role for this phosphatase in controlling the inflammatory responses of primary macrophages to Gram-positive bacterial infection.  相似文献   

4.
Exposure of macrophages to LPS elicits the production of proinflammatory cytokines, such as TNF-alpha, through complex signaling mechanisms. Mitogen-activated protein (MAP) kinases play a critical role in this process. In the present study, we have addressed the role of MAP kinase phosphatase-1 (MKP-1) in regulating proinflammatory cytokine production using RAW264.7 macrophages. Analysis of MAP kinase activity revealed a transient activation of c-Jun N-terminal kinase (JNK) and p38 after LPS stimulation. Interestingly, MKP-1 was induced concurrently with the inactivation of JNK and p38, whereas blocking MKP-1 induction by triptolide prevented this inactivation. Ectopic expression of MKP-1 accelerated JNK and p38 inactivation and substantially inhibited the production of TNF-alpha and IL-6. Induction of MKP-1 by LPS was found to be extracellular signal-regulated kinase dependent and involved enhanced gene expression and increased protein stability. Finally, MKP-1 expression was also induced by glucocorticoids as well as cholera toxin B subunit, an agent capable of preventing autoimmune diseases in animal models. These findings highlight MKP-1 as a critical negative regulator of the macrophage inflammatory response, underscoring its premise as a potential target for developing novel anti-inflammatory drugs.  相似文献   

5.
Mitogen-activated protein (MAP) kinases are critical mediators of innate immune responses. In response to lipopolysaccharide (LPS), MAP kinases are rapidly activated and play an important role in the production of proinflammatory cytokines. Although a number of MAP kinase phosphatases (MKPs) have been identified, their roles in the control of cytokine production have not been well defined. In the present report, we investigated the role of MKP-1 in alveolar macrophages stimulated with LPS. We found that LPS triggered transient activation of three MAP kinase subfamilies, ERK, JNK, and p38, in both immortalized and primary murine alveolar macrophages. MKP-1 was rapidly induced by LPS, and its induction correlated with the dephosphorylation of these MAP kinases. Blocking MKP-1 with triptolide prolonged the activities of both JNK and p38 in immortalized alveolar macrophages. Stimulation of primary alveolar macrophages isolated from MKP-1-deficient mice with LPS resulted in a prolonged p38 phosphorylation compared with wild type alveolar macrophages. Accordingly, these MKP-1-deficient alveolar macrophages also mounted a more robust and rapid tumor necrosis factor alpha production than their wild type counterparts. Adenovirus-mediated MKP-1 overexpression significantly attenuated tumor necrosis factor alpha production in immortalized alveolar macrophages. Finally, MKP-1 was induced by a group of corticosteroids frequently prescribed for the treatment of inflammatory lung diseases, and the anti-inflammatory potencies of these drugs closely correlated with their abilities to induce MKP-1. Our studies indicated that MKP-1 plays an important role in dampening the inflammatory responses of alveolar macrophages. We speculate that MKP-1 may represent a novel target for therapeutic intervention of inflammatory lung diseases.  相似文献   

6.
Microglial cells release monocyte chemoattractant protein-1 (MCP-1) which amplifies the inflammation process by promoting recruitment of macrophages and microglia to inflammatory sites in several neurological diseases. In the present study, dexamethasone (Dex), an anti-inflammatory and immunosuppressive drug has been shown to suppress the mRNA and protein expression of MCP-1 in activated microglia resulting in inhibition of microglial migration. This has been further confirmed by the chemotaxis assay which showed that Dex or MCP-1 neutralization with its antibody inhibits the microglial recruitment towards the conditioned medium of lipopolysaccharide (LPS)-treated microglial culture. This study also revealed that the down-regulation of the MCP-1 mRNA expression by Dex in activated microglial cells was mediated via mitogen-activated protein kinase (MAPK) pathways. It has been demonstrated that Dex inhibited the phosphorylation of Jun N-terminal kinase (JNK) and p38 MAP kinases as well as c-jun, the JNK substrate in microglia treated with LPS. The involvement of JNK and p38 MAPK pathways in induction of MCP-1 production in activated microglial cells was confirmed as there was an attenuation of MCP-1 protein release when microglial cells were treated with inhibitors of JNK and p38. In addition, Dex induced the expression of MAP kinase phosphatase-1 (MKP-1), the negative regulator of JNK and p38 MAP kinases in microglial cells exposed to LPS. Blockade of MKP-1 expression by triptolide enhanced the phosphorylation of JNK and p38 MAPK pathways and the mRNA expression of MCP-1 in activated microglial cells treated with Dex. In summary, Dex inhibits the MCP-1 production and subsequent microglial cells migration to the inflammatory site by regulating MKP-1 expression and the p38 and JNK MAPK pathways. This study reveals that the MKP-1 and MCP-1 as novel mediators of biological effects of Dex may help developing better therapeutic strategies for the treatment of patients with neuroinflammatory diseases.  相似文献   

7.
Previously, it was suggested that the release of nuclearly formed ADP-ribose polymers or ADP-ribosylated proteins could be responsible for the cytosolic and mitochondrial effects of poly(ADP-ribose) polymerase (PARP)-1 activation in oxidative stress. In this report, we provide a novel alternative mechanism. We found that reactive oxygen species-activated PARP-1 regulated the activation of JNK and p38 mitogen-activated protein kinases (MAPKs) because inhibition of PARP-1 by pharmacons, small interfering RNA silencing of PARP-1 expression, or the transdominant expression of enzymatically inactive PARP-1 resulted in the inactivation of these MAPKs. This regulation was achieved by increased expression and enlarged cytoplasmic localization of MAPK phosphatase-1 (MKP-1) upon PARP-1 inhibition in oxidative stress because changes in MKP-1 expression were reflected in the phosphorylation states of JNK and p38. Furthermore, we found that in MKP-1-silenced cells, PARP inhibition was unable to exert its protective effect, indicating the pivotal roles of JNK and p38 in mediating the oxidative-stress-induced cell death as well as that of increased MKP-1 expression in mediating the protective effect of PARP inhibition. We suggest that regulation of a protein that can directly influence cytoplasmic signaling cascades at the expression level represents a novel mechanism for the cytoplasmic action of PARP-1 inhibition.  相似文献   

8.
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.  相似文献   

9.
Repair of damaged tissue requires the coordinated action of inflammatory and tissue-specific cells to restore homeostasis, but the underlying regulatory mechanisms are poorly understood. In this paper, we report new roles for MKP-1 (mitogen-activated protein kinase [MAPK] phosphatase-1) in controlling macrophage phenotypic transitions necessary for appropriate muscle stem cell-dependent tissue repair. By restricting p38 MAPK activation, MKP-1 allows the early pro- to antiinflammatory macrophage transition and the later progression into a macrophage exhaustion-like state characterized by cytokine silencing, thereby permitting resolution of inflammation as tissue fully recovers. p38 hyperactivation in macrophages lacking MKP-1 induced the expression of microRNA-21 (miR-21), which in turn reduced PTEN (phosphatase and tensin homologue) levels, thereby extending AKT activation. In the absence of MKP-1, p38-induced AKT activity anticipated the acquisition of the antiinflammatory gene program and final cytokine silencing in macrophages, resulting in impaired tissue healing. Such defects were reversed by temporally controlled p38 inhibition. Conversely, miR-21-AKT interference altered homeostasis during tissue repair. This novel regulatory mechanism involving the appropriate balance of p38, MKP-1, miR-21, and AKT activities may have implications in chronic inflammatory degenerative diseases.  相似文献   

10.
IFN-gamma has significant immunoregulatory activity and plays an important role in both innate and adaptive immunity. Additive effects of IFN-gamma and the Toll-like receptor ligand LPS has been investigated in macrophages, but in fibroblasts is incompletely understood. IFN-gamma and LPS synergistically induced MCP-1 and NO release in primary murine dermal fibroblasts. IFN-gamma enhanced LPS-induced JNK and p38 MAPK phosphorylation but had no effect on NF-kappaB activity. The induction of both MCP-1 and NO was attenuated by inhibition of JNK but not p38 MAPK. Serine 727 STAT1 phosphorylation by IFN-gamma was increased by LPS, and this was also attenuated by inhibition of JNK but not p38 MAPK. IFN-gamma inhibited the basal expression of MAPK phosphatase-1, a negative regulator of MAPK signaling pathway. These results suggest that enhancement of LPS-induced JNK activation by IFN-gamma associated with inhibition of MAPK phosphatase-1 may be one of the mechanisms of additive effects between IFN-gamma and LPS in fibroblasts.  相似文献   

11.
The mitogen-activated protein kinases (MAPK) have been shown to participate in iNOS induction following lipopolysaccharide (LPS) stimulation, while the role of MAPKs in the regulation of arginase remains unclear. We hypothesized that different MAPK family members are involved in iNOS and arginase expression following LPS stimulation. LPS-stimulated RAW 264.7 cells exhibited increased protein and mRNA levels for iNOS, arginase I, and arginase II; although the induction of arginase II was more robust than that for arginase I. A p38 inhibitor completely prevented iNOS expression while it only attenuated arginase II induction. In contrast, a MEK1/2 inhibitor (ERK pathway) completely abolished arginase II expression while actually enhancing iNOS induction in LPS-stimulated cells. Arginase II promoter activity was increased by ∼4-fold following LPS-stimulation, which was prevented by the ERK pathway inhibitor. Arginase II promoter activity was unaffected by a p38 inhibitor or JNK pathway interference. Transfection with a construct expressing a constitutively active RAS mutant increased LPS-induced arginase II promoter activity, while transfection with a vector expressing a dominant negative ERK2 mutant or a vector expressing MKP-3 inhibited the arginase II promoter activity. LPS-stimulated nitric oxide (NO) production was increased following siRNA-mediated knockdown of arginase II and decreased when arginase II was overexpressed. Our results demonstrate that while both the ERK and p38 pathways regulate arginase II induction in LPS-stimulated macrophages, iNOS induction by LPS is dependent on p38 activation. These results suggest that differential inhibition of the MAPK pathway may be a potential therapeutic strategy to regulate macrophage phenotype.  相似文献   

12.
13.
14.
The cyclic AMP (cAMP) signaling pathway has been reported to either promote or suppress apoptosis, in a cell context-dependent manner. Our previous study has shown that cAMP, by protein kinase A (PKA)-cAMP response element-binding protein (CREB)-dynein light chain (DLC) pathway, negatively regulates mitogen-activated protein kinase p38 activation, thereby contributing to tumor necrosis factor (TNF)-alpha-induced apoptosis in certain types of cells. However, it remains largely unknown how cAMP suppresses apoptosis. Here we report that cAMP antagonized UV-induced apoptosis in Rat-1 and NIH 3T3 cells. Despite that cAMP significantly suppressed UV-induced p38 activation, inhibition of p38 activity showed no significant effect on UV-induced cell death in both cell lines. Further studies revealed that cAMP antagonized UV-induced apoptosis by inhibition of c-Jun N-terminal protein kinase (JNK) activation. The induction of the long form of cellular FLICE-inhibitory protein (c-FLIP(L)) and mitogen-activated protein kinase phosphatase-1 (MKP-1), but not DLC and p21(WAF1) by CREB was required for cAMP-mediated inhibition of JNK activation. The suppression by cAMP of UV-induced apoptosis was reversed by c-FLIP(L) small-interfering RNA (siRNA) or MKP-1 siRNA, which released the inhibition of JNK activation by cAMP. Thus, our results provide a molecular mechanism by which cAMP suppresses JNK activation and antagonizes apoptosis.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) family members such as c-jun N-terminal kinase (JNK) may act as signal transducers early during pancreatitis development and evidence indicates that MAPK phosphatases (MKP) downregulate MAPK. We therefore investigated expression and regulation of pancreatic MKP in vivo. Pancreatic MKP mRNA levels were near or below the detection threshold in unstimulated animals. Cerulein hyperstimulation strongly induced MKP-1, MKP-3, and MKP-5 expression, peaking 30 to 60 min after treatment. Thus, MKP's clearly are early responsive genes during pancreatitis induction. Interestingly, inhibition of MKP-1 expression by Ro-31-8220 maximally induced activation of JNK but not of p38 and ERK in acutely isolated acini. These effects indicate that JNK may indeed be a preferred MKP-1 substrate in vivo.  相似文献   

16.
IL-23 is a heterodimeric cytokine composed of a unique p19 subunit and of a p40 subunit that is also common to IL-12. We defined the distinct signaling mechanisms that regulate the LPS-mediated induction of IL-23 p19 and p40 in human macrophages and dendritic cells. We found that the overexpression of dominant-negative Rac1 (N17Rac1) enhanced LPS-induced IL-23 p19 expression but did not alter p40 expression or IL-12 p70 production in PMA-treated THP-1 macrophages and in human monocyte-derived dendritic cells. Although the inhibition of either p38 MAPK or JNK enhanced LPS-induced p19 expression, N17Rac1 did not influence either p38 MAPK or JNK activation. By contrast, N17Rac1 augmented both NF-kappaB gene expression and p65 trans activation stimulated by LPS without affecting the degradation of IkappaB-alpha or DNA binding to NF-kappaB. Furthermore, small interference RNA of NF-kappaB p65 attenuated cellular amounts of p65 and suppressed LPS-induced p19 expression but did not affect p40 expression. Our findings indicate that Rac1 negatively controls LPS-induced IL-23 p19 expression through an NF-kappaB p65 trans activation-dependent, IkappaB-independent pathway and that NF-kappaB p65 regulates LPS-induced IL-23 p19, but not p40, expression, which causes differences in the control of IL-23 p19 and p40 expression by Rac1.  相似文献   

17.
18.
19.
Although c-Jun N-terminal kinase (JNK) plays an important role in cytokine expression, its function in IL-12 production is obscure. The present study uses human macrophages to examine whether the JNK pathway is required for LPS-induced IL-12 production and defines how JNK is involved in the regulation of IL-12 production by glutathione redox, which is the balance between intracellular reduced (GSH) and oxidized glutathione (GSSG). We found that LPS induced IL-12 p40 protein and mRNA in a time- and concentration-dependent manner in PMA-treated THP-1 macrophages, and that LPS activated JNK and p38 mitogen-activated protein (MAP) kinase, but not extracellular signal-regulated kinase, in PMA-treated THP-1 cells. Inhibition of p38 MAP kinase activation using SB203580 dose dependently repressed LPS-induced IL-12 p40 production, as described. Conversely, inhibition of JNK activation using SP600125 dose dependently enhanced both LPS-induced IL-12 p40 production from THP-1 cells and p70 production from human monocytes. Furthermore, JNK antisense oligonucleotides attenuated cellular levels of JNK protein and LPS-induced JNK activation, but augmented IL-12 p40 protein production and mRNA expression. Finally, the increase in the ratio of GSH/GSSG induced by glutathione reduced form ethyl ester (GSH-OEt) dose dependently enhanced LPS-induced IL-12 p40 production in PMA-treated THP-1 cells. GSH-OEt augmented p38 MAP kinase activation, but suppressed the JNK activation induced by LPS. Our findings indicate that JNK negatively affects LPS-induced IL-12 production from human macrophages, and that glutathione redox regulates LPS-induced IL-12 production through the opposite control of JNK and p38 MAP kinase activation.  相似文献   

20.

Objective

Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2) in inflammation during macrophage-adipocyte interaction.

Methods

White adipose tissues (WAT) from mice either on a high-fat diet (HFD) or normal chow (NC) were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA) and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK)- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction.

Results

HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs). MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction.

Conclusion

MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号