首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results are presented from numerical simulations of axisymmetric plasma flows that occur in a coaxial accelerator with a longitudinal magnetic field. The simulations were carried out based on a two-dimensional MHD plasma dynamic model for the general case of a three-component magnetic field. The steady plasma flows are calculated in solving the time-dependent MHD problem by the relaxation method. The results of simulations of steady transonic flows are compared with the solutions that were obtained in the smooth accelerator channel approximation. The main regular features of plasmodynamic processes are revealed. It is found that current sheets arise in the plasma flow in a comparatively strong longitudinal magnetic field.  相似文献   

2.
The excitation of quasistatic magnetic fields by a circularly polarized laser pulse in a plasma channel is considered. It is shown that, to second order in the amplitude of the electric field of the laser pulse, circular rotation of the plane of polarization of the laser radiation in a radially nonuniform plasma gives rise to a nonlinear azimuthal current and leads to the excitation of the radial and axial components of the magnetic field. The dependence of the magnetic field distribution over the plasma channel on the spatial dimensions of the pulse and on the channel width is investigated for a moderate-power laser pulse. The structure of the magnetic fields excited by a relativistic laser pulse in a wide plasma channel is analyzed.  相似文献   

3.
Results are presented from studies of the structure and dynamics of current sheets in three-dimensional magnetic configurations with an X line by means of holographic interferometry. It is found that the efficiency of plasma compression into the sheet is reduced as the longitudinal magnetic field B z , directed along the X line, increases. This effect is attributed to the enhancement of the longitudinal component of the magnetic field within the sheet and to the corresponding increase in the magnetic pressure. It is shown that the formation of a plasma sheet lags behind the beginning of the plasma current pulse, the delay time being close to the characteristic Alfvén time.  相似文献   

4.
(i) The focusing of an ion beam by a Morozov lens formed by a current ring in a plasma is calculated using an exact expression for the magnetic field and taking into account the nonparaxial character of the focused beam. The possible ways of optimizing such a lens are considered. (ii) Different versions of extended plasmaoptic devices in which spherical aberrations are minimized are analyzed. It is proposed to optimize extended plasma-optic devices by changing the magnetic field from the entrance end to the exit end of the solenoid in such a way that the boundary magnetic surface always coincides with the boundary surface of the focused beam. It is shown that, under the same conditions, the focusing power of the optimized devices is one to two orders of magnitude higher than that of traditional thin plasma lenses. (iii) The problem of creating a magnetic field whose strength is optimized as a function of the longitudinal coordinate is solved by the Tikhonov regularization method. (iv) An extended plasma-optic device with an optimized solenoid for focusing 1-MeV ion beams is calculated, and the ion trajectories in the device are traced. (v) It is proved expedient to develop special-purpose computer codes aimed at modeling and optimizing the existing and planned experimental plasma-optic focusing devices.  相似文献   

5.
Direct measurements of magnetic fields in a plasma show that current sheets can form in magnetic configurations with an X line in the presence of a longitudinal magnetic field. It is found that, in a plane perpendicular to the X line and to the direction of the main current, the current sheet has two very different dimensions. The tangential and normal components of the magnetic field and current density in the sheet are determined. The influence of the initial conditions (such as the strength of the longitudinal magnetic field, the gradient of the transverse field, and the plasma ion mass) on the current sheet parameters is investigated.  相似文献   

6.
Plasma flows caused by the interaction of the discharge current with the azimuthal magnetic self-field in coaxial channels (nozzles) of plasma accelerators are strongly affected by the longitudinal field produced by external conductors. A two-dimensional MHD model of flows in channels in the presence of a longitudinal magnetic field is proposed. Depending on the ratio between the characteristic values of the longitudinal and azimuthal field components, one of three types of flow is established in the channel: super-Alfvén, sub-Alfvén, or combined. The properties of different types of flows are analyzed. The acceleration process in sub-Alfvén flows differs qualitatively from that in regimes without a longitudinal field in transitions between the kinetic, thermal, and magnetic energy components.  相似文献   

7.
The influence of a transverse magnetic field and the working-gas pressure on the rotation frequency of the current channel, as well as on the electric field in the positive column and the cathode voltage drop in a dc gas discharge, was studied experimentally. The working gases were pure hydrogen and hydrogen-methane, hydrogen-argon, and hydrogen-argon-methane mixtures. It is shown that a transverse (with respect to the discharge current) magnetic field stabilizes a normal glow discharge against a transition to an arc discharge at specific absorbed powers above 300 W/cm3. The cathode voltage drop and the electric field in the positive column are measured. It is shown that the electric field does not depend on the magnetic field strength, whereas the cathode voltage drop increases with increasing magnetic field. It is found that the rotation frequency of the current channel is a complicated function of the discharge parameters and attains 400 Hz.  相似文献   

8.
Near-electrode processes in a coaxial plasma accelerator with equipotential impenetrable electrodes are simulated using a two-dimensional (generally, time-dependent) two-fluid MHD model with allowance for the Hall effect and the plasma conductivity tensor. The simulations confirm the theoretically predicted mechanism of the so-called “crisis of current” caused by the Hall effect. The simulation results are compared with available experimental data. The influence of both the method of plasma supply to the channel and an additional longitudinal magnetic field on the development of near-electrode instabilities preceding the crisis of current is studied.  相似文献   

9.
The effect of an external magnetic field on the dynamics of shock waves generated in an argon plasma due to both explosive processes on the cathode and expansion of the spark channel has been studied experimentally. It is shown that the expanding plasma of the cathode spot forms a shock wave and that the application of a longitudinal magnetic field decelerates the radial expansion of the cathode plasma. It is found that the intensities of some argon spectral lines increase in the presence of a magnetic field.  相似文献   

10.
The critical current at which an unsteady oscillating virtual cathode forms in an electron beam is studied as a function of the external magnetic field guiding the beam electrons. It is shown that the critical beam current decreases with external magnetic field and that there is an optimum magnetic induction at which the critical current for the onset of an oscillating virtual cathode in the beam is minimum. For a strong guiding magnetic field, the critical beam current is described by relationships derived under the assumption that the motion of the beam electrons is one-dimensional. Such behavior is explained by the characteristic features of the dynamics of the beam electrons in longitudinal and radial directions in the interaction space at different inductions of the external magnetic field.  相似文献   

11.
12.
Active plasmonic devices are mostly designed at visible frequencies. Here, we propose an active terahertz (THz) plasmonic lens tuned by an external magnetic field. Unlike other tunable devices where the tuning is achieved by changing the plasma frequency of materials, the proposed active lens is tuned by changing the cyclotron frequency through manipulating magnetoplasmons (MPs). We have theoretically investigated the dispersion relation of MPs of a semiconductor?Cinsulator?Csemiconductor structure in the Voigt configuration and systematically designed several lenses realized with a doped semiconductor slab perforated with sub-wavelength slits. It is shown through finite?Cdifference time?Cdomain simulations that THz wave propagating through the designed structure can be focused to a small size spot via the control of MPs. The tuning range of the focal length under the applied magnetic field (up to 1?T) is ??3??, about 50% of the original focal length. Various lenses, including one with two focal spots and a tunable lens for dipole source imaging, are realized for the proposed structure, demonstrating the flexibility of the design approach. The proposed tunable THz plasmonic lenses may find applications in THz science and technology such as THz imaging.  相似文献   

13.
A new type of longitudinal electric current is revealed by analyzing the drift trajectories of charged particles in a tokamak—the current that may be referred to as the asymmetry current because it is associated with the asymmetry of the boundary between trapped and transit particles in phase space. The generation of this current is explained by the fact that the motions of the particles that cross the magnetic surface at a given point in opposite directions are qualitatively different. The asymmetry current results from the toroidal variations of the magnetic field and is maintained by the radial momentum flux of transit particles. The contribution of the particles of different species to the asymmetry current density is proportional to their pressure, is independent of the gradients of the plasma parameters, is maximum at the magnetic axis, and decreases toward the plasma periphery. In contrast to standard neoclassical theory, the asymmetry current can be found only from exact particle trajectories. The asymmetry current is calculated for tokamaks with differently shaped magnetic surfaces and for a model stellarator. By exploiting the newly revealed asymmetry current, together with the bootstrap current, it may be possible to substantially simplify the problem of creating a tokamak reactor.  相似文献   

14.
The divergence of an ion beam in a cylindrical accelerator with a closed Hall current is considered under the assumption that the Hall current does not substantially change the external magnetic field. It is shown that the tangent of the angle of inclination of the ion trajectories to the cylinder axis is on the order of the ratio of the electron gyroradius in terms of the total energy of an electron to the characteristic radius of the acceleration channel. The beam divergence can be prevented by applying an external magnetic field in a direction parallel to the cylinder axis.  相似文献   

15.
Results are presented from experimental studies of the spatial electron density distribution in current sheets formed in three-dimensional magnetic configurations with X-lines. The electron density is measured by using two-exposure holographic interferometry. It is shown that plasma sheets can form in a magnetic configuration with an X-line in the presence of a sufficiently strong longitudinal magnetic-field component B when the electric current is excited along the X-line. As the longitudinal magnetic-field component increases, the electron density decreases and the plasma sheet thickness increases; i.e., the plasma is compressed into a sheet less efficiently.  相似文献   

16.
This letter re-examines a recently published calculation of the forces exerted on a membrane ion channel by a cation passing through in the presence of an externally applied magnetic field. We show here, in contradiction to the originally published calculation, that the forces generated due to the Lorentz force of the magnetic field on the cation are negligible compared with the forces required to activate an ion channel protein conformation change associated with the gating of the channel. Received: 11 August 1998 / Revised version: 25 October 1998 / Accepted: 11 November 1998  相似文献   

17.
A decrease in the amplitude of the current of a vacuum spark discharge over a dielectric surface with increasing discharge gap length is established. It is shown that, in the presence of a longitudinal magnetic field, the leading edge of the discharge voltage pulse is extended, whereas the clearly pronounced current pulse transforms into a train of alternating current oscillations. The discharge is found to decelerate when the spark is preceded by a low-current discharge.  相似文献   

18.
A diagnostic method for determining plasma density from the dispersion of surface waves guided by a discharge channel in an axial magnetic field is discussed. The diagnostic characteristics that are the easiest to record experimentally are determined by analyzing the theoretical dispersion curves, and the ways of exploiting these characteristics for plasma diagnostics are suggested. To determine the slowing-down factor of a probing wave in a plasma channel, it is proposed to use diagnostic-signal resonances that occur when the wavelength of the slowed wave becomes equal to the length of the emitting or receiving antenna. The dependence of the plasma density averaged over the cross section of the plasma column on the strength of the external magnetic field is determined for a discharge channel formed as a result of the ionization self-channeling of plasma (lower hybrid) waves and whistlers.  相似文献   

19.
Mechanisms responsible for current oscillations at the ion branch of the probe characteristic are investigated experimentally and theoretically. A comparison between experiment and theory shows that the oscillations in a hollow-cathode discharge in a longitudinal magnetic field are most likely related to the onset of helical instability.  相似文献   

20.
The structure of magnetic fields and currents in current sheets formed in 2D and 3D magnetic configurations with an X line is analyzed using experimental data. It is found that, in addition to the main (longitudinal) current, transverse currents comparable in magnitude with the main current are also generated in current sheets. Relations between the longitudinal and transverse currents in current sheets formed in different magnetic configurations are obtained. The vectors of the total currents and their deviations from the direction of the main current in different regions of the sheet are determined. It is shown that the total magnetic fields and currents in current sheets have a 3D structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号