首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary The macronutrient variation within four 6 year oldEucalyptus saligna and four 5 year oldE. wandoo growing on rehabilitated bauxite pits was determined. Significant differences in mean nutrient concentrations were generally recorded between good soil condition sites and poor soil sites, between tree individuals, branch height, and plant organ type; but mean nutrient values were not different among canopy aspects. Fully expanded leaves of the current year provided the most uniform nutrient levels among the plant organs and showed major differences between sites with good soil nutrient conditions and those with poor conditions. Differences in foliar and branch levels of N, P, K, Ca and Mg, the variation between sites, canopy heights and plant organ types, and the use of foliar nutrient levels to indicate deficiencies are discussed.  相似文献   

2.
Effect of removal of snow cover in winter was investigated in an 80-year-old sugar maple (Acer saccharum Marsh.) stand in southern Quebec. We hypothesized that winter soil frost would induce some of the decline symptoms observed in sugar maple stands in southern Quebec in the early 1980's. Snow was continuously removed from around trees for a one week (partial removal) or for a four-month period (complete removal) during the 1990–1991 winter. Foliage and soils were sampled periodically during the summer of 1991. The complete snow removal treated trees showed decreased leaf water potential and increased peroxidase activity over most of the growing season. Foliar Ca was reduced in both snow removal treatments early in the growing season while foliar N was reduced in the complete snow removal trees late in the growing season. Soil NO 3 and K+ were elevated in both snow removal treatments at various times throughout the growing season. Prolonged soil frost in a sugar maple stand can induce lower leaf water potential, higher leaf peroxidase activity and early leaf senescence during the following growing season. Soil frost may have reduced nutrient uptake without affecting significantly the leaf nutrient status.  相似文献   

3.
刘合霞  李博  胡兴华  邓涛  黄仕训  邹玲俐 《广西植物》2017,37(10):1261-1269
为探讨苦苣苔科植物对其岩溶生境的适应性,该研究选取黄花牛耳朵(Primulina lutea)、紫花报春苣苔(Pri.purpurea)和桂林蛛毛苣苔(Paraboea guilinensis)三种苦苣苔科植物,将其栽种在石灰土及红壤两种不同类型的土壤中,观测记录其生长性状并对其叶片元素含量进行测定和比较。植株采集过程中,同时采集自然生境中三种苦苣苔科植物叶片及取样植物基部土壤,并对叶片及土壤元素的含量进行测定,作为今后苗圃试验的参照。结果表明:三种苦苣苔科植物在两种土壤上的生长状况及适应性具有差异,其在石灰土上生长良好,在红壤上生长较差;在两种不同土壤中,除N外,桂林蛛毛苣苔的叶片其他元素(P、K、Mn、Mg、Ca、Zn、Cu)差异极显著(P0.01);除P外,紫花报春苣苔的叶片其他元素(N、K、Mn、Mg、Ca、Zn、Cu)差异极显著(P0.01);除N、Cu、Ca外,黄花牛耳朵的叶片元素(P、K、Mn、Mg、Zn)差异极显著(P0.01);三种植物的叶片元素比值,除少数值没有差异外,大部分指标差异都极显著;对叶片元素与栽培土壤元素的相关性分析,发现植物叶片Mn元素与土壤中N、Ca、Mg、Zn、Mn、有机质含量等呈正相关,土壤P元素与叶片中N、P元素呈正相关,而与叶片中Zn元素呈负相关关系。在其他栽培条件一致的条件下,土壤因素及物种差别是造成黄花牛耳朵、紫花报春苣苔和桂林蛛毛苣苔适应性产生差异的主要原因。  相似文献   

4.
The concentrations of nitrogen (N), phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg) and chlorine (Cl) were followed monthly in pre-senescence leaves and post-abscission leaves of Kandelia candel (L.) Druce at the Jiulongjiang estuary, and Fujian, China. The element retranslocation efficiency (RE) was studied during leaf senescence. The element RE's evaluated using different methods were compared and a new method was put forward to evaluate element RE during leaf senescence in evergreen trees without concentrated leaf fall. The results showed that during leaf senescence, 77.22% N, 57.53% P, and 44.51% K were translocated out of senescing leaves. Translocation of nutrients out of senescing leaves back into shoots was an important nutnent-conservation mechanism for N and P, was less important for K, and did not occur for Ca, Mg, Na, or Cl. One of the reasons for the high primary productivity of mangroves in nutrient poor sites (especially with low N) is the high nutrient use efficiency.  相似文献   

5.
Tesfay Teklay 《Plant and Soil》2004,267(1-2):297-307
Foliar inputs from indigenous agroforestry trees and shrubs could provide sufficient nutrients and organic matter to sustain crop growth. However, concentrations of foliar nutrients and organic constituents show considerable seasonal, inter- and/or intra-species variations. To determine this variability, green and senesced leaves were sampled during dry and wet seasons from Cordia africana, Albizia gummifera and Milletia ferruginea trees at Wondo Genet, southern Ethiopia. Cordia is a deciduous, non-leguminous tree, while Albizia and Milletia are semi-deciduous and leguminous trees. Leaves were analyzed for concentrations of ash, N, P, K, cellulose, lignin, soluble polyphenols, and condensed tannins. Results from statistical analyses showed significant seasonal variations (P < 0.001) in concentrations of all leaf constituents, except for P and cellulose. Foliar concentrations of ash, N, soluble polyphenols, and condensed tannins were higher during the wet season while those of K and lignin were higher during the dry season. Green leaves had significantly higher (p < 0.001) N and P concentrations than senesced leaves, while senesced leaves had higher concentrations of K, cellulose, soluble polyphenols, and condensed tannins. The ‘ Relative Percentage Changes’ in concentration of N and P in senesced leaves, i.e., their enrichment or depletion with such nutrients relative to those in green leaves, were significantly higher (P < 0.001) for Cordia than Albizia and Milletia. On the other hand, there was no consistent pattern in the enrichment or depletion of senesced leaves with organic constituents, but these leaves were in most cases more enriched with organic constituents than green leaves. Over all, the percentage depletion or enrichment ranged from about 8% to 38% for N; 24% to 63% for P; −141% to 48% for K; −44% to 15% for cellulose; −44% to 51% for lignin; −203% to −61% for soluble polyphenols; and −290% to 11% for condensed tannins. It was concluded that variations in species and life-form (legume versus non-legume), season, and developmental stage of leaves could affect the quality of organic material from agroforestry species, which has important implications for management of organic residues in tropical agricultural systems.  相似文献   

6.
Monthly foliage samples were evaluated for elemental composition from red spruce and balsam fir trees in a commercial, low elevation spruce-fir stand at Howland, Maine during the 1987 growing season. Balsam fir showed consistently higher concentrations in A1 and to a lesser extent N, Ca, Mg, and Fe when compared to red spruce. Red spruce exhibited consistently higher Mn and K concentrations. Both species showed a marked seasonal trend in the foliar concentrations of N, P, K, and Ca in current year foliage. For N, P, and K current year foliar concentrations declined rapidly during the early part of the growing season. Calcium concentrations steadily increased during the growing season for both species and age class of needles. Foliar concentrations of N and P in both species suggests that the availability of these nutrients is limited for this site.  相似文献   

7.
Nutrient imbalances of declining sugar maple (Acer saccharum Marsh.) stands in southeastern Quebec have been associated with high exchangeable Mg levels in soils relative to soil K and Ca. A greenhouse experiment was set up to test the hypothesis that the equilibrium between soil exchangeable K, Ca, and Mg ions influences the growth and nutrient status of sugar maple seedlings. Also tested was whether endomycorrhization can alter nutrient acquisition under various soil exchangeable basic cations ratios. Treatments consisted of seven ratios of soil exchangeable K, Ca, and Mg making up a total base saturation of 58%, and a soil inoculation treatment with the endomycorrhizal fungus Glomus versiforme (control and inoculated), in a complete factorial design. Sugar maple seedlings were grown for 3 months in the treated soils. Plant shoot elongation rate, dry biomass and nutrient concentrations in foliage were influenced by the various ratios of soil cations. The predicted plant biomass and foliar K concentration were highest at a soil Ca saturation of 38%, a soil K saturation of 12%, and a soil Mg saturation of 8%. Potassium concentration in foliage was dependent on the level of Ca and Mg saturation in the soil when soil K saturation was close to 12%. Foliar Ca and Mg levels were more dependent on their corresponding levels in soil than foliar K. Colonization by G. versiforme did not influence seedling growth and macronutrient uptake. The results confirm that growth and nutrition of sugar maple are negatively affected by imbalances in exchangeable basic cations in soils.  相似文献   

8.
Summary Bromus inermis Leyss. was grown in a 2×2×2 factorial design using different levels of mycorrhizal inoculation (inoculated and noninoculated), soil water stress (Ψ1 or −0.8 MPa) and potassium (K) fertilization (0 or 150 ppm) as factors. Soil water stress and mycorrhizal inoculation significantly reduced plant top dry weight during the 18 week study. Chlamydospore production by the mycorrhizal symbiontGlomus fasciculatum (Thaxter sensu. Gerd.) Gerd. and Trappe was significantly reduced by soil water stress of −0.8 MPa. Potassium (K) fertilization did not significantly influence plant top growth or mycorrhizal colonization. However, foliar Ca and Mg were significantly lower in plants fertilized with K. Foliar Ca and Mg concentrations of P, K, N, Mn, Zn and Cu were significantly greater in drought stressed plants whereas Ca and Mg concentrations were significantly greater in well-watered plants.  相似文献   

9.
采用盆栽试验,研究元谋干热河谷燥红土和变性土上生长的植物叶片以及凋落叶营养元素含量,并分析养分重吸收效率对土壤类型与物种互作的响应.结果表明: 土壤类型对叶片N、P、Ca、Mg、Cu、Zn、Fe、N∶P以及凋落叶N、P、Mn、N∶P均有显著影响;燥红土植物叶片与凋落叶N、Mn含量和N∶P显著高于变性土,而燥红土植物叶片P、Ca、Mg、Fe、Cu、Zn和凋落叶P含量显著低于变性土.燥红土植物叶片N含量较变性土高34.8%,而P含量低40.0%;在叶片凋落时,N、P、K表现为重吸收,而其他元素呈富集状态.燥红土凋落叶Ca、Mg、Mn富集系数显著高于变性土.物种仅对叶片N含量有显著影响,物种与土壤交互作用对植物叶片和凋落叶元素含量影响不显著,表明各土壤类型对不同物种元素含量的影响方式较为一致.土壤类型对植物元素含量的影响可进一步作用于干热河谷植物凋落物分解、植物-土壤的养分反馈以及生物地球化学循环.  相似文献   

10.
The aim of the study was to examine the response of pear (Pyrus communis L.) trees to soil and foliar applications of boron (B). The experiment was carried out during 2000–2001 in a commercial orchard in Central Poland on mature `Conference' pear trees grafted on Pyrus communis var. caucasica seedlings planted at a spacing of 4 × 2.5 m on a sandy loam soil with a low hot water-extractable B status. Annually, foliar sprays with B were applied. (i) before full bloom (at green and white bud stage, and when 1–5% of flowers was at full bloom), (ii) after flowering (at petal fall, and 7 and 14 days after the end of flowering), or (iii) postharvest in fall (approximately 6 weeks before leaf fall). Spray treatments involved application of B at a rate of 0.2 kg ha–1 in spring or 0.8 kg ha–1 in fall. Additionally, other trees were supplied with soil-applied B at the bud break stage at a rate of 2 kg ha–1. Trees untreated with B served as the control. The results revealed that foliar applications of B before full bloom or after harvest increased fruit set and fruit yield. Tree vigor, mean fruit weight, firmness, soluble solids concentration and titratable acidity of fruits at harvest were not affected by B treatments. Foliar B sprays before full bloom or after harvest increased B concentrations in flowers, and both leaves and fruitlets at 40 days after flowering. Only the foliar treatments after flowering and soil fertilization with B increased the content of this microelement in fruit and leaves at 80 and 120 days after full bloom. Foliar B application before full bloom or after harvest increased calcium (Ca) in fruitlets at 40 days after full bloom, in fruit, and in leaves at 80 and 120 days after full bloom. Nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) in plant tissues were not affected by B fertilization. After storage, and also after the ripening period, fruits from the trees sprayed with B before full bloom or after harvest had higher firmness and titratable acidity than those from the control trees. After the ripening period, fruits from the trees sprayed with B before full bloom or after harvest had lower membrane permeability and were less sensitive to internal browning than the control fruits. These findings indicate that prebloom and postharvest B sprays are successful in increasing pear tree yielding and in improving fruit storability under the conditions of low B availability in the soil.  相似文献   

11.
Summary The seasonal fluctuation of N, P, K, Ca, Mg, Fe, Mn, Mo, and Co, in leaves, roots and nodules of 40–50 year oldAlnus glutinosa trees growing at four different locations along the banks of the Tormes river, in the province of Salamanca, was studied. Also, the evolution of the soil organic matter under the trees sampled was evaluated. The data obtained for the various nutrient elements in the three plant parts are statistically treated at the significance levels of 99–95 per cent, and some remarks as to the nutritional status of the European alder in respect to the nutrients and its contribution to soil nutrient-cycling are provided. A positive correlation was found between N–P, N–K, N–Mg, and N–Mo, in leaves, and between N–P, N–K, N–Fe, N–Mn, and N–Mo in root nodules. In roots only, no significance at any level was obtained between N and any of the elements analyzed.  相似文献   

12.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

13.
Qualea parviflora Mart. (Vochysiaceae) is a deciduous tree, commonly observed in campo sujo, cerrado sensu stricto and cerradão vegetation types in Brazilian cerrado (savannas). In this study we investigated herbivory, nutritional, and water status effects on leaf sclerophylly of Q. parviflora. Twenty fully expanded leaves were taken from 10 plants in each vegetation type four times a year. Mean leaf concentration of N, P, K, Ca, C, Al, Si, and percentage of total phenols, herbivory and tannins were measured on a plant basis. Leaf specific mass (LSM) (g m?2), a sclerophylly index, and pre-dawn leaf water potential (MPa) were also recorded. Soil samples below each tree were collected to quantify N–NO3, N–NH4, P, K, Mn, soil moisture, organic matter, Si, and Al. Qualea parviflora showed a LSM from 69 to 202 g m?2 and leaves were younger and less sclerophyllous in November (beginning of rainy season). Q. parviflora inhabiting the cerradão had leaves with higher concentration of nutrients and lower sclerophylly while trees in campo sujo and cerrado sensu stricto did not show significant differences in leaf sclerophylly. The concentrations of N, P, K and tannins had an inverse relationship with leaf age. Concentration of phenols, Al, C, Ca, Si, C/N and Ca/K increased with leaf age. The concentrations of P and Ca/K ratio in leaves explained 60% of variation observed in leaf sclerophylly. We did not find any significant relationship between the level of sclerophylly and water potential or herbivory. Our results corroborate the hypothesis that predicts lower concentrations of essential macronutrients would be the main factors influencing higher sclerophylly in leaves of Q. parviflora plants in Cerrado.  相似文献   

14.
A comparison of the effects of foliar and soil N application was made in field-grown mature fruiting Gala/M9 apple trees (Malus domestica Borkh) in 2001 and 2002 growing seasons under Pacific Northwest growing conditions in southern British Columbia, Canada. The trees, six years old at the start of the experiment, were treated: (1) with 5 g/l urea sprays supplied every two weeks (7 times) from mid May to mid August (total about 50 g N/tree/year), (2) with the same amount of N applied to the soil with the same timing and quantity as for the foliar treatment, and (3) with no N (control). Leaf color (as SPAD readings) and N concentrations (mg/g), and soil NH4+-N and NO3-N were measured periodically throughout the two seasons. Leached NO3-N was monitored monthly via an anion exchange probe from June to October in 2001 and from May to November in 2002. Shoot length was measured in October and N concentration of one-year-old wood and roots was determined in December of each growing s eason. Soil N application significantly increased shoot length relative to control or foliar N application. Leaf color, leaf N, and N concentration of one-year-old wood and roots were similarly increased relative to control by both soil and foliar N application. These treatments also increased fruit yield relative to control. There was no significant difference in yield and fruit quality between soil and foliar N applications. Soil N application increased soil NH4+-N and NO3-N content in the root zone, and also increased the NO3 leaching loss below the root zone especially late in the growing season. Our results suggested that tree N status and yield and fruit quality could be maintained by multiple urea sprays during the growing season in apple orchards, and foliar N application will reduce the risk of soil NO3-N leaching.  相似文献   

15.
Summary Growth of the broad-leaved graminoid Milium effusum, occurring in shady deciduous forests, was matched with periods of high light influx through the tree canopy in spring and autumn. Fertile shoots grew faster than sterile shoots. Leaves on flowering shoots were fully developed when the budbreak started on the trees, whereas nonflowering shoots had fully developed leaves when the tree canopy closed. Leaf concentrations of N and P were high (6.1 and 0.74% respectively) in spring but decreased as the leaves expanded. Maximum pool sizes of N and P in whole tillers were reached about one month after the onset of spring growth, whereas maximum spring pools of K, Mg, and Ca were timed with peak biomass about one month later. The leaves lost nutrients during summer when no growth took place. Since leaching losses were negligible, nutrients were probably allocated from the leaves to support root growth. Autumn reallocation to winter stores was low. The pattern of growth and nutrient use suggests that light availability, i.e., the resource in relatively lowest supply, regulates the investment of the resource in highest supply, i.e., nutrients. This is consistent with previously reported observations on Eriophorum vaginatum, a graminoid of low nutrient — high light environments. This species utilizes nutrients efficiently at the expense of less efficient acquisition of carbon. We suggest that selection for efficient utilization of the resource in lowest relative supply has been a strong driving force behind the physiological adaptation of both species to their environments.  相似文献   

16.
Xu  Xiaoniu  Hirata  Eiji  Enoki  Tsutomu  Tokashiki  Yoshihiro 《Plant Ecology》2004,173(2):161-170
Decomposition of typhoon-generated and normal leaf litter and their release patterns for eight nutrient elements were investigated over 3 yr using the litterbag technique in a subtropical evergreen broad-leaved forest on Okinawa Island, Japan. Two common tree species, Castanopsis sieboldii and Schima wallichii, representative of the vegetation and differing in their foliar traits, were selected. The elements analyzed were N, P, K, Ca, Mg, Na, Al, Fe and Mn. Dry mass loss at the end of study varied in the order: typhoon green leaves > typhoon yellow leaves > normal leaves falling for both species. For the same litter type, Schima decomposed faster than Castanopsis. Dry mass remaining after 2 yr of decomposition was positively correlated with initial C:N and C:P ratios. There was a wide range in patterns of nutrient concentration, from a net accumulation to a rapid loss in decomposition. Leaf litter generated by typhoons decomposed more rapidly than did the normal litter, with rapid losses for N and P. Analysis of initial quality for the different litter types showed that the C:P ratios were extremely high (range 896 – 2467) but the P:N ratios were < 0.05 (range 0.02 – 0.04), indicating a likely P-limitation for this forest. On average 32% less N and 60% less P was retranslocated from the typhoon-generated green leaves than from the normal litter for the two species, Castanopsis and Schima. An estimated 2.13 g m–2 yr–1 more N and 0.07 g m–2 yr–1 more P was transferred to the soil as result of typhoon disturbances, which were as high as 52% of N and 74% of P inputted from leaf litter annually in a normal year. Typhoon-driven maintenance of rapid P cycling appears to be an important mechanism by which growth of this Okinawan subtropical forest is maintained.  相似文献   

17.
Serpentine soils limit plant growth by NPK deficiencies, low Ca availability, excess Mg, and high heavy metal levels. In this study, three congeneric serpentine and nonserpentine evergreen shrub species pairs were grown in metalliferous serpentine soil with or without NPKCa fertilizer to test which soil factors most limit biomass production and mineral nutrition responses. Fertilization increased biomass production and allocation to leaves while decreasing allocation to roots in both serpentine and nonserpentine species. Simultaneous increases in biomass and leaf N:P ratios in fertilized plants of all six species suggest that N is more limiting than P in this serpentine soil. Neither N nor P concentrations, however, nor root to shoot translocation of these nutrients, differed significantly between serpentine and nonserpentine congeners. All six species growing in unfertilized serpentine soil translocated proportionately more P to leaves compared to fertilized plants, thus maintaining foliar P. Leaf Ca:Mg molar ratios of the nonserpentine species were generally equal to that of the soil. The serpentine species, however, maintained significantly higher leaf Ca:Mg than both their nonserpentine counterparts and the soil. Elevated leaf Ca:Mg in the serpentine species was achieved by selective Ca transport and/or Mg exclusion operating at the root-to-shoot translocation level, as root Ca and Mg concentrations did not differ between serpentine and nonserpentine congeners. All six species avoided shoot toxicity of heavy metals by root sequestration. The comparative data on nutrient deficiencies, leaf Ca:Mg, and heavy metal sequestration suggest that the ability to maintain high leaf Ca:Mg is a key evolutionary change needed for survival on serpentine soil and represents the physiological feature distinguishing the serpentine shrub species from their nonserpentine congeners. The results also suggest that high leaf Ca:Mg is achieved in these serpentine species by selective translocation of Ca and/or inhibited transport of Mg from roots, rather than by uptake/exclusion at root surfaces.  相似文献   

18.
Mayor  X.  Rodá  F. 《Plant Ecology》1992,(1):209-217
Correlations between primary production and patterns of nutrient use and nutrient availability were investigated in 18 plots in closed holm oak (Quercus ilex L.) stands in the Montseny mountains (NE Spain), searching for evidence of nutrient limitation on primary production. The plots spanned a range of altitudes and slope aspects within a catchment. Nutrients considered were nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg) in plant samples, and the above plus calcium (Ca) and sodium (Na) in the soil. Primary production was found by summing the annual aboveground biomass increment to the annual litterfall. Across plots, primary production was correlated with the annual return of nutrients in litterfall, but this relationship probably arose from the common effects of the amount of litterfall on both primary production and nutrient return, and not from any nutrient limitation. Primary production was not significantly correlated with nutrient concentrations in mature leaves nor leaf litterfall, nor with absolute or relative foliar retranslocation of nutrients before leaf abscission, nor with the concentration and content (kg/ha) of total N, extractable P, and exchangeable K, Mg, Ca and Na in the upper mineral soil. We conclude that there is no correlational evidence that primary production is nutrient limited in this holm oak forest.  相似文献   

19.
Summary Eucalyptus grandis trees were grown in plantations with and without added fertiliser to examine the effects of plant nutrition on photosynthesis and growth. Leaves were sampled from known locations within canopies of selected trees and leaf N and P concentrations were measured. Contour maps of N and P distributions were then produced for crowns of trees aged between 6 and 16 months. Gas exchange measurements on sample leaves were used to estimate parameters of a model of C3 photosynthesis as a function of leaf N and P contentrations. Linear relationships were obtained between model parameters and leaf N concentration, but P appeared to be present in excess, since no correlation was found with P contentration. Photosynthetic light response curves were calculated for model leaves with differing N concentrations. The curves show that optimal concentrations of N in leaves depend on mean levels of irradiance during growth.  相似文献   

20.
Two experiments were conducted to determine patterns of N change in tissues of autumn olive (Elaeagnus umbellata Thunb.) and black alder (Alnus glutinosa [L.] Gaertn.) during autumn in central Illinois, U.S.A. In the first study leaf nitrogen concentrations of autumn olive decreased 40% at an infertile minespoil site and 39% at a fertile prairie site throughout autumn whereas nitrogen concentrations in respective bark samples increased by 39% and 37%. Salt-extractable protein concentrations increased in bark and decreased in leaves over the sampling period. Free amino acid concentrations of autumn olive leaves decreased over the course of the experiment from peak concentrations in August. Asparagine, glutamic acid and proline were major constituents of the free amino acid pools in leaves. Total phosphorus concentrations of autumn olive leaves declined by 40–46% during autumn while bark concentrations of P did not significantly change.In the second experiment non-nodulated seedlings of alder receiving a low level of N-fertilization did not exhibit net resorption of leaf N during autumn whereas foliar N concentration of contrasting nonactinorhizal cottonwood plants (Populus deltoides Bartr. ex. Marsh) under the same fertilization regime decreased by 27% after the first frost. A gradual but significant decrease of 38% in foliar N concentration of nodulated alder seedlings grown under a low N-fertilization regime was associated with the cessation of nitrogenase activity during autumn in nodules. Compared with the low N fertilization regime, the higher level of N-fertilization resulted in smaller autumnal decreases of foliar N concentration in nodulated alder (17%) and in cottonwood (20%); but there was no decrease in foliar N concentration in non-nodulated alder. The higher level of N-fertilization promoted a greater accumulation of N in the roots than in the bark of both tree species after the first frost.Our results suggest that black alder lackingFrankia symbionts does not exhibit net leaf N resorption and that autumnal decreases in leaf N ofFrankia-nodulated black alder result primarily from declining foliar N import relative to export due to low temperature inhibition of N2 fixation. In contrast, autumn olive exhibited greater and more precipitous autumnal declines in foliar N concentration than those of alder, and the pattern of N decline was unaffected by site fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号