首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Nichols  R P Maickel  G K Yim 《Life sciences》1983,32(16):1819-1825
The role of brain serotonin levels in Walker 256 tumor induced anorexia was investigated. Total and free plasma tryptophan, regional brain serotonin and 5-hydroxyindoleacetic acid were determined at night, and their relationship to nocturnal anorexia assessed by linear regression analysis. No significant difference in tryptophan, serotonin, or 5-hydroxyindoleacetic acid levels was detected between pair fed and tumor bearing rats exhibiting a 20% reduction of nighttime food intake. Tumor bearing rats with a 40% reduction in food intake had higher nighttime plasma free tryptophan and regional 5-hydroxyindoleacetic acid levels than their pair fed malnourished controls. These results indicate that increased plasma free tryptophan and elevated serotonin metabolism may not be the initial dysfunction responsible for nocturnal anorexia. However, it may contribute to the decreasing nocturnal food intake in severely anorexic tumor rats.  相似文献   

2.
Intracerebroventricular administration of oxytocin (OT) and an OT agonist significantly decreased food intake in a dose-related manner in fasted rats. Central administration of an OT antagonist by itself (up to doses of 8 nmol) did not potentiate deprivation-induced food intake, but pretreatment with the OT receptor antagonist prevented the expected inhibition of food intake produced by OT and the OT agonist. Once-daily ICV injections of OT led to the development of tolerance to the inhibitory effects on food intake by the third day of treatment, but daily pretreatment with the OT antagonist prevented the development of this tolerance. In addition to causing decreased food intake, ICV administration of OT significantly increased grooming behavior but produced no dyskinesias. The inhibitory effect of OT on food intake was characterized by decreased amounts of food intake but a normal pattern of ingestion. The anorexia produced was central in nature and was not associated with altered plasma levels of hormones involved in caloric homeostasis or with changes in blood glucose. The OT agonist had relatively little effect on water intake when given in doses that significantly inhibited food intake. These results support the hypothesis that specific OT receptors within the central nervous system participate in the inhibition of feeding under certain conditions in rats.  相似文献   

3.
It is known that, in rats, central and peripheral ghrelin increases food intake mainly through activation of neuropeptide Y (NPY) neurons. In contrast, intracerebroventricular (ICV) injection of ghrelin inhibits food intake in neonatal chicks. We examined the mechanism governing this inhibitory effect in chicks. The ICV injection of ghrelin or corticotropin-releasing factor (CRF), which also inhibits feeding and causes hyperactivity in chicks. Thus, we examined the interaction of ghrelin with CRF and the hypothalamo-pituitary-adrenal (HPA) axis. The ICV injection of ghrelin increased plasma corticosterone levels in a dose-dependent or a time-dependent manner. Co-injection of a CRF receptor antagonist, astressin, attenuated ghrelin-induced plasma corticosterone increase and anorexia. In addition, we also investigated the effect of ghrelin on NPY-induced food intake and on expression of hypothalamic NPY mRNA. Co-injection of ghrelin with NPY inhibited NPY-induced increase in food intake, and the ICV injection of ghrelin did not change NPY mRNA expression. These results indicate that central ghrelin does not interact with NPY as seen in rodents, but instead inhibits food intake by interacting with the endogenous CRF and its receptor.  相似文献   

4.
The effect of somatostatin on corticotropin-releasing factor (CRF)-induced anorexia was examined in rats. Intracerebroventricular (icv) administration of 0.11 nmol and 0.21 nmol ovine CRF significantly suppressed food intake of 24 h-starved rats. Icv administration of 0.31 nmol somatostatin 14 and somatostatin 28 partially reversed suppression of food intake induced by icv injection of 0.21 nmol CRF in 24 h-starved rats. These results suggest that somatostatin may counteract the suppressive effect of CRF on food intake within the central nervous system.  相似文献   

5.
The present study examined possible interactions between central glucagon-like peptide-1 (GLP-1) and oxytocin (OT) neural systems by determining whether blockade of GLP-1 receptors attenuates OT-induced anorexia and vice versa. Male rats were acclimated to daily 4-h food access. In the first experiment, rats were infused centrally with GLP-1 receptor antagonist or vehicle, followed by an anorexigenic dose of synthetic OT. Access to food began 20 min later. Cumulative food intake was measured every 30 min for 4 h. In the second experiment, rats were infused with OT receptor blocker or vehicle, followed by synthetic GLP-1 [(7-36) amide]. Subsequent food intake was monitored as before. The anorexigenic effect of OT was eliminated in rats pretreated with the GLP-1 receptor antagonist. Conversely, GLP-1-induced anorexia was not affected by blockade of OT receptors. In a separate immunocytochemical study, OT-positive terminals were found closely apposed to GLP-1-positive perikarya, and central infusion of OT activated c-Fos expression in GLP-1 neurons. These findings implicate endogenous GLP-1 receptor signaling as an important downstream mediator of anorexia in rats after activation of central OT neural pathways.  相似文献   

6.
The effects of chronic central administration of corticotropin-releasing factor (CRF) on food intake, body weight, and hypothalamic-pituitary-adrenocortical hormones were investigated in rats. The infusion of ovine CRF at doses of 0.3 and 1.0 microgram/h continuously induced decrease in food intake and a suppression of body-weight gain for 7 days. The inhibition of body weight gain induced by CRF could not be accounted for solely by a decreased food intake since the suppression of body-weight gain in CRF-infused rats was significantly greater than that observed in rats which received the same amount of food as the CRF-infused rats. The content of proopiomelanocortin (POMC) -derived peptides in the anterior lobe of the pituitary as well as the plasma levels of ACTH and corticosterone (B) were significantly elevated in CRF-treated rats, and the CRF content in the hypothalamus was significantly decreased. These results suggest that chronic intracerebroventricular (icv) administration of CRF stimulates the synthesis and secretion of POMC-related peptides in the pituitary and suppresses food intake accompanied by inhibition of body weight gain. The results are similar to clinical and laboratory findings observed in patients with stress-induced anorexia.  相似文献   

7.
Suppression of body weight and eating disorders, such as anorexia, are one of the major symptoms of psychiatric disorders such as depression. However, the mechanisms of weight loss and reduced appetite in depressive patients and in animal models of depression are largely unknown. In this study, we characterized the mechanism of anorexia resulting from depression using socially defeated rats as an animal model of depression. Socially defeated rats showed suppressed body weight gain, enlarged adrenal glands, decreased home cage activity, decreased food intake, and increased immobility in the forced swim test. These results are representative of some of the core symptoms of depression. Simultaneously, we observed decreased levels of phosphorylated AMP-activated protein kinase (AMPK) and acetyl-coenzyme A (CoA) carboxylase (ACC) and increased levels of malonyl-CoA in the hypothalamus of socially defeated rats. Hypothalamic malonyl-CoA controlled feeding behavior and elevation of malonyl-CoA in the hypothalamus induced inhibition of food intake. Our findings suggest that the suppression of body weight gain caused by social defeat stress is caused by anorexic feeding behavior via an increased concentration of malonyl-CoA in the hypothalamus.  相似文献   

8.
The anorexia of aging syndrome in humans is characterized by spontaneous body weight loss reflecting diminished food intake. We reported previously that old rats undergoing a similar phenomenon of progressive weight loss (i.e., senescent rats) also display altered feeding behavior, including reduced meal size and duration. Here, we tested the hypothesis that blunted responsiveness to neuropeptide Y (NPY), a feeding stimulant, occurs concurrently with senescence-associated anorexia/hypophagia. Young (8 mo old, n = 9) and old (24-30 mo old, n = 11) male Fischer 344 rats received intracerebroventricular NPY or artificial cerbrospinal fluid injections. In response to a maximum effective NPY dose (10 microg), the net increase in size of the first meal after injection was similar in old weight-stable (presenescent) and young rats (10.85 +/- 1.73 and 12.63 +/- 2.52 g/kg body wt (0.67), respectively). In contrast, senescent rats that had spontaneously lost approximately 10% of body weight had significantly lower net increases at their first post-NPY meal (1.33 +/- 0.33 g/kg body wt (0.67)) than before they began losing weight. Thus altered feeding responses to NPY occur in aging rats concomitantly with spontaneous decrements in food intake and body weight near the end of life.  相似文献   

9.
Since the peripheral prostaglandin synthetizing system may at least partly involved in the anorexia that follows central interleukin-1 beta (IL-1) administration, this study was undertaken to investigate the effect of ibuprofen (ip), selective cyclooxygenase blocker and AA 861, selective lipoxygenase inhibitor, on changes of food and water intake by a single injection of IL-1 (2 micrograms/rat, ip). We demonstrated that food and water intake were suppressed by peripheral administration of IL-1. Throughout the entire observation periods, suppressed food intake was partially restored to control levels by ibuprofen, while water intake completely restored. In addition, no significant differences about water/food intake were observed in the IL-1 + ibuprofen-treated groups, respectively. In the next experiment, IL-1 induced anorexia was also partially restored to the control level following pretreatment with AA 861. These results may suggest that other mechanism including lipoxygenase blocker besides prostaglandin production may be involved in IL-1 induced anorexia.  相似文献   

10.
AMP-activated protein kinase (AMPK) and mammalian Target of Rapamycin (mTOR) are key regulators of cellular energy balance and of the effects of leptin on food intake. Acute exercise is associated with increased sensitivity to the effects of leptin on food intake in an IL-6-dependent manner. To determine whether exercise ameliorates the AMPK and mTOR response to leptin in the hypothalamus in an IL-6-dependent manner, rats performed two 3-h exercise bouts, separated by one 45-min rest period. Intracerebroventricular IL-6 infusion reduced food intake and pretreatment with AMPK activators and mTOR inhibitor prevented IL-6-induced anorexia. Activators of AMPK and fasting increased food intake in control rats to a greater extent than that observed in exercised ones, whereas inhibitor of AMPK had the opposite effect. Furthermore, the reduction of AMPK and ACC phosphorylation and increase in phosphorylation of proteins involved in mTOR signal transduction, observed in the hypothalamus after leptin infusion, were more pronounced in both lean and diet-induced obesity rats after acute exercise. Treatment with leptin reduced food intake in exercised rats that were pretreated with vehicle, although no increase in responsiveness to leptin-induced anorexia after pretreatment with anti-IL6 antibody, AICAR or Rapamycin was detected. Thus, the effects of leptin on the AMPK/mTOR pathway, potentiated by acute exercise, may contribute to appetite suppressive actions in the hypothalamus.  相似文献   

11.
Animal studies are very useful in detection of early disease indicators and in unravelling the pathophysiological processes underlying core psychiatric disorder phenotypes. Early indicators are critical for preventive and efficient treatment of progressive psychiatric disorders like anorexia nervosa. Comparable to physical hyperactivity observed in anorexia nervosa patients, in the activity-based anorexia rodent model, mice and rats express paradoxical high voluntary wheel running activity levels when food restricted. Eleven inbred mouse strains and outbred Wistar WU rats were exposed to the activity-based anorexia model in search of identifying susceptibility predictors. Body weight, food intake and wheel running activity levels of each individual mouse and rat were measured. Mouse strains and rats with high wheel running activity levels during food restriction exhibited accelerated body weight loss. Linear mixed models for repeated measures analysis showed that baseline wheel running activity levels preceding the scheduled food restriction phase strongly predicted activity-based anorexia susceptibility (mice: Beta  =  −0.0158 (±0.003 SE), P<0.0001; rats: Beta  =  −0.0242 (±0.004 SE), P<0.0001) compared to other baseline parameters. These results suggest that physical activity levels play an important role in activity-based anorexia susceptibility in different rodent species with genetically diverse background. These findings support previous retrospective studies on physical activity levels in anorexia nervosa patients and indicate that pre-morbid physical activity levels could reflect an early indicator for disease severity.  相似文献   

12.
Hypothalamic-pituitary-gonadal axis function strongly influences feeding and body weight in cycling females in many species. To test the sufficiency of cyclic variations in plasma estradiol to reproduce normal patterns of spontaneous feeding, food intake, and body weight, ovariectomized Long-Evans rats were subcutaneously injected every fourth day with 2 microg estradiol benzoate or with the oil vehicle alone. Cyclic estradiol treatment completely normalized the trajectory of body weight gain and total food intake through seven treatment cycles. The hyperphagia of ovariectomized rats was expressed as an increase in spontaneous meal size. Meal frequency decreased, but not enough to compensate for the increase in meal size. Estradiol treatment normalized both parameters. In addition, cyclic estradiol treatment produced a further phasic decrease in meal size (and increase in meal frequency) and a decrease in food intake during the second night after injection. This phasic change is similar to the feeding changes occurring during estrus in intact rats. Sexual receptivity was measured during the eighth estradiol treatment cycle, 4 h after injection of 0.5 mg progesterone. Lordosis scores at the time of the treatment cycle modeling estrus were maximal, and scores at the time modeling diestrus were slightly increased over those of rats that did not receive estradiol. Finally, plasma estradiol levels, measured during the ninth treatment cycle, revealed a near-normal cyclic pattern of plasma estradiol levels. These results provide the first demonstration that the induction of a cyclic, near-physiological pattern of plasma estradiol is sufficient to maintain normal levels of body weight, spontaneous feeding patterns, total food intake, and (together with progesterone) sexual receptivity in ovariectomized rats.  相似文献   

13.
The brain-gut peptide cholecystokinin (CCK) inhibits food intake following peripheral or site directed central administration. Peripheral exogenous CCK inhibits food intake by reducing the size and duration of a meal. Antagonist studies have demonstrated that the actions of the exogenous peptide mimic those of endogenous CCK. Antagonist administration results in increased meal size and meal duration. The feeding inhibitory actions of CCK are mediated through interactions with CCK-1 receptors. The recent identification of the Otsuka-Long-Evans-Tokushima Fatty (OLETF) rat as a spontaneous CCK-1 receptor knockout model has allowed a more comprehensive evaluation of the feeding actions of CCK. OLETF rats become obese and develop non-insulin dependent diabetes mellitus (NIDDM). Consistent with the absence of CCK-1 receptors, OLETF rats do not respond to exogenous CCK. OLETF rats are hyperphagic and their increased food intake is characterized by a large increase in meal size with a decrease in meal frequency that is not sufficient to compensate for the meal size increase. Deficits in meal size control are evident in OLETF rats as young as 2 days of age. OLETF obesity is secondary to the increased food intake. Pair feeding to amounts consumed by intact control rats normalizes body weight, body fat and elevated insulin and glucose levels. Hypothalamic arcuate nucleus peptide mRNA expression in OLETF rats is appropriate to their obesity and is normalized by pair feeding. In contrast, pair fed and young pre-obese OLETF rats have greatly elevated dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) mRNA expression. Elevated DMH NPY in OLETF rats appears to be a consequence of the absence of CCK-1 receptors. In intact rats NPY and CCK-1 receptors colocalize to neurons within the compact subregion of the DMH and local CCK administration reduces food intake and decreases DMH NPY mRNA expression. We have proposed that the absence of DMH CCK-1 receptors significantly contributes to the OLETF's inability to compensate for their meal size control deficit leading to their overall hyperphagia. Access to a running wheel and the resulting exercise normalizes food intake and body weight in OLETF rats. When given access to running wheels for 6 weeks shortly after weaning, OLETF rats do not gain weight to the same degree as sedentary OLETF rats and do not develop NIDDM. Exercise also prevents elevated levels of DMH NPY mRNA expression, suggesting that exercise exerts an alternative, non-CCK mediated, control on DMH NPY. The OLETF rat is a valuable model for characterizing actions of CCK in energy balance and has provided novel insights into interactions between exercise and food intake.  相似文献   

14.
Oleoylethanolamide (OEA), a lipid synthesized in the intestine, reduces food intake and stimulates lipolysis through peroxisome proliferator-activated receptor-alpha. OEA also activates transient receptor potential vanilloid type 1 (TRPV1) in vitro. Because the anorexigenic effect of OEA is associated with delayed feeding onset and reduced locomotion, we examined whether intraperitoneal administration of OEA results in nonspecific behavioral effects that contribute to the anorexia in rats. Moreover, we determined whether circulating levels of other gut hormones are modulated by OEA and whether CCK is involved in OEA-induced anorexia. Our results indicate that OEA reduces food intake without causing a conditioned taste aversion or reducing sodium appetite. It also failed to induce a conditioned place aversion. However, OEA induced changes in posture and reduced spontaneous activity in the open field. This likely underlies the reduced heat expenditure and sodium consumption observed after OEA injection, which disappeared within 1 h. The effects of OEA on motor activity were similar to those of the TRPV1 agonist capsaicin and were also observed with the peroxisome proliferator-activated receptor-alpha agonist Wy-14643. Plasma levels of ghrelin, peptide YY, glucagon-like peptide 1, and apolipoprotein A-IV were not changed by OEA. Finally, antagonism of CCK-1 receptors did not affect OEA-induced anorexia. These results suggest that OEA suppresses feeding without causing visceral illness and that neither ghrelin, peptide YY, glucagon-like peptide 1, apolipoprotein A-IV, nor CCK plays a critical role in this effect. Despite that OEA-induced anorexia is unlikely to be due to impaired motor activity, our data raise a cautionary note in how specific behavioral and metabolic effects of OEA should be interpreted.  相似文献   

15.
16.
Piribedil, given either intraperitoneally or intracerebroventricularly to rats trained to eat 4 h a day, induced a dose- and time-related anorexia. In this context it was less potent than either amphetamine or fenfluramine.The anorectic effect of piribedil was selectively antagonized by blockade of dopamine (DA) receptors in the central nervous system but not either inhibition of catecholamine synthesis, blockade of α- or β-adrenoceptors or serotoninergic receptors. Also a blocker of “peripheral” DA receptors failed to antagonize piribedil-induced anorexia.Piribedil, as opposed to amphetamine, failed to increase locomotor activity or to induce stereotyped behaviour at doses lower than that required to cause an approximate 80% reduction of food intake.These findings indicate that stimulation of central DA receptors involved in feeding regulation is responsible for the anorexigenic effect of piribedil. This effect in most instances occurs at dose levels of the compound which fail to induce other central stimulant effects.  相似文献   

17.
Evidence in rats suggests that central oxytocin (OT) signaling pathways contribute to suppression of food intake during dehydration (i.e., dehydration anorexia). The present study examined water deprivation-induced dehydration anorexia in wild-type and OT -/- mice. Mice were deprived of food alone (fasted, euhydrated) or were deprived of both food and water (fasted, dehydrated) for 18 h overnight. Fasted wild-type mice consumed significantly less chow during a 60-min refeeding period when dehydrated compared with their intake when euhydrated. Conversely, fasting-induced food intake was slightly but not significantly suppressed by dehydration in OT -/- mice, evidence for attenuated dehydration anorexia. In a separate experiment, mice were deprived of water (but not food) overnight for 18 h; then they were anesthetized and perfused with fixative for immunocytochemical analysis of central Fos expression. Fos was elevated similarly in osmo- and volume-sensitive regions of the basal forebrain and hypothalamus in wild-type and OT -/- mice after water deprivation. OT-positive neurons expressed Fos in dehydrated wild-type mice, and vasopressin-positive neurons were activated to a similar extent in wild-type and OT -/- mice. Conversely, significantly fewer neurons within the hindbrain dorsal vagal complex were activated in OT -/- mice after water deprivation compared with activation in wild-type mice. These findings support the view that OT-containing projections from the hypothalamus to the hindbrain are necessary for the full expression of compensatory behavioral and physiological responses to dehydration.  相似文献   

18.
Neuropeptide Y (NPY) is a key factor in the neurochemical control of food intake, and obstructive cholestasis can be associated with disturbances in food intake. Our aim in this study was to determine whether obstructive cholestasis in the rat is associated with defective central responsiveness to NPY. Cholestasis was induced in rats by surgical bile duct resection. Rats with obstructive cholestasis exhibited a 20% reduction in food intake 2 days after laparotomy (compared with sham-resected controls) that had resolved by 4 days after surgery. Responsiveness to the orexigenic action of NPY was tested by measuring food intake after intracerebroventricular injection of NPY. In sham-resected rats, NPY infusion strikingly increased food intake, whereas bile duct-resected (BDR) rats showed a consistent significantly impaired feeding response to NPY at postlaparotomy days 2, 4, and 7. Separate experiments measured specific binding of [(3)H]NPY to hypothalamic receptors. Fos protein expression was measured in the hypothalamic paraventricular nucleus (PVN) as a marker of NPY-induced neuronal activation. The decreased orexigenic responsiveness to NPY was not caused by altered NPY binding at hypothalamic receptors or its ability to activate neurons in the PVN. Therefore, cholestatic rats demonstrate an attenuated NPY-induced orexigenic drive that occurs early after biliary obstruction, when cholestatic rats exhibit reduced food intake, and persists despite the return of food intake to normal levels and the presence of intact central NPY-related neuronal pathways.  相似文献   

19.
Effects of somatostatin on food intake in rats   总被引:1,自引:0,他引:1  
G Aponte  P Leung  D Gross  T Yamada 《Life sciences》1984,35(7):741-746
We examined the possibility that somatostatin, a tetradecapeptide distributed in the gut and the central nervous system, may influence food intake and behavior in rats. Although intravenously infused somatostatin did not alter food intake in 8 hour fasted rats, intracerebroventricularly infused somatostatin resulted in a biphasic response, first increasing then decreasing food intake. We also observed that the effects of somatostatin vary depending upon whether animals are fed or fasted. In fed rats, food intake was decreased, while in fasted rats food intake was increased. These results suggest that somatostatin can act in the central nervous system to stimulate appetite; but that other factors, possibly related to gut motility or clearance, may inhibit further feeding once the stomach is full.  相似文献   

20.
Exposure to hypoxia induces anorexia in humans and rodents, but the role of leptin remains under discussion and that of orexigenic and anorexigenic hypothalamic neuropeptides remains unknown. The present study was designed to address this issue by using obese (Lepr(fa)/Lepr(fa)) Zucker rats, a rat model of genetic leptin receptor deficiency. Homozygous lean (Lepr(FA)/Lepr(FA)) and obese (Lepr(fa)/Lepr(fa)) rats were randomly assigned to two groups, either kept at ambient pressure or exposed to hypobaric hypoxia for 1, 2, or 4 days (barometric pressure, 505 hPa). Food intake and body weight were recorded throughout the experiment. The expression of leptin and vascular endothelial growth factor (VEGF) genes was studied in adipose tissue with real-time quantitative PCR and that of selected orexigenic and anorexigenic neuropeptides was measured in the hypothalamus. Lean and obese rats exhibited a similar hypophagia (38 and 67% of initial values at day 1, respectively, P < 0.01) and initial decrease in body weight during hypoxia exposure. Hypoxia led to increased plasma leptin levels only in obese rats. This resulted from increased leptin gene expression in adipose tissue in response to hypoxia, in association with enhanced VEGF gene expression. Increased hypothalamic neuropeptide Y levels in lean rats 2 days after hypoxia exposure contributed to accounting for the enhanced food consumption. No significant changes occurred in the expression of other hypothalamic neuropeptides involved in the control of food intake. This study demonstrates unequivocally that altitude-induced anorexia cannot be ascribed to anorectic signals triggered by enhanced leptin production or alterations of hypothalamic neuropeptides involved in anabolic or catabolic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号