首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nicotinic acetylcholine receptors are prototypes for the pharmaceutically important family of pentameric ligand-gated ion channels. Here we present atomic resolution structures of nicotine and carbamylcholine binding to AChBP, a water-soluble homolog of the ligand binding domain of nicotinic receptors and their family members, GABAA, GABAC, 5HT3 serotonin, and glycine receptors. Ligand binding is driven by enthalpy and is accompanied by conformational changes in the ligand binding site. Residues in the binding site contract around the ligand, with the largest movement in the C loop. As expected, the binding is characterized by substantial aromatic and hydrophobic contributions, but additionally there are close contacts between protein oxygens and positively charged groups in the ligands. The higher affinity of nicotine is due to a main chain hydrogen bond with the B loop and a closer packing of the aromatic groups. These structures will be useful tools for the development of new drugs involving nicotinic acetylcholine receptor-associated diseases.  相似文献   

3.
The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the alpha-subunit of nicotinic acetylcholine receptors and in particular the homomeric alpha7 nicotinic receptor. We report the isolation and characterization of an alpha-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the alpha7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the alpha3beta2 nAChR indicating that alpha-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of alpha3beta2 nAChRs. alpha-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first alpha-conotoxin with higher affinity for the closely related receptor subtypes, alpha3beta2 versus alpha6beta2, and selectively blocks these two subtypes when compared with alpha2beta2, alpha4beta2, and alpha1beta1deltaepsilon nAChRs.  相似文献   

4.
Upon ligand binding at the subunit interfaces, the extracellular domain of the nicotinic acetylcholine receptor undergoes conformational changes, and agonist binding allosterically triggers opening of the ion channel. The soluble acetylcholine-binding protein (AChBP) from snail has been shown to be a structural and functional surrogate of the ligand-binding domain (LBD) of the receptor. Yet, individual AChBP species display disparate affinities for nicotinic ligands. The crystal structure of AChBP from Aplysia californica in the apo form reveals a more open loop C and distinctive positions for other surface loops, compared with previous structures. Analysis of Aplysia AChBP complexes with nicotinic ligands shows that loop C, which does not significantly change conformation upon binding of the antagonist, methyllycaconitine, further opens to accommodate the peptidic antagonist, alpha-conotoxin ImI, but wraps around the agonists lobeline and epibatidine. The structures also reveal extended and nonoverlapping interaction surfaces for the two antagonists, outside the binding loci for agonists. This comprehensive set of structures reflects a dynamic template for delineating further conformational changes of the LBD of the nicotinic receptor.  相似文献   

5.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that belong to the Cys-loop receptor superfamily. These receptors are allosteric proteins that exist in different conformational states, including resting (closed), activated (open), and desensitized (closed) states. The acetylcholine binding protein (AChBP) is a structural homologue of the extracellular ligand-binding domain of nAChRs. In previous studies, the degree of the C-loop radial extension of AChBP has been assigned to different conformational states of nAChRs. It has been suggested that a closed C-loop is preferred for the active conformation of nAChRs in complex with agonists whereas an open C-loop reflects an antagonist-bound (closed) state. In this work, we have determined the crystal structure of AChBP from the water snail Lymnaea stagnalis (Ls) in complex with dihydro-β-erythroidine (DHβE), which is a potent competitive antagonist of nAChRs. The structure reveals that binding of DHβE to AChBP imposes closure of the C-loop as agonists, but also a shift perpendicular to previously observed C-loop movements. These observations suggest that DHβE may antagonize the receptor via a different mechanism compared to prototypical antagonists and toxins.  相似文献   

6.
To understand the mechanism of allosteric coupling between the ligand-binding domain and the ion channel of the Cys-loop ligand-gated ion channels (LGICs), we fused the soluble acetylcholine-binding protein (AChBP), which lacks an ion channel, to either the cationic serotonin type-3A ion channel (5HT(3A)) or the anionic glycine ion channel. Both linear chimeras expressed in HEK-293 cells display high affinity for the nicotinic agonist epibatidine (K(D) = 0.2-0.5 nM), but are not targeted to the cell surface. Only after substituting a ring of three loops located at the putative membrane side of the AChBP three-dimensional structure by the homologous residues of 5HT(3A), the resulting chimera AChBP(ring)/5HT(3A) (i) still displayed on intact cells an apparent high affinity for epibatidine, yet with a fourfold decrease (K(D) = 2.1 nM), (ii) displayed a high proportion of low affinity sites (11 +/- 7 microM) for the resting state stabilizing competitive antagonist alpha-bungarotoxin and (iii) was successfully targeted to the cell surface, as seen by immunofluorescence labelling. The AChBP(ring)/5HT(3A) chimera forms a pentameric structure, as revealed by sucrose gradient sedimentation. However, no whole-cell patch-clamp currents were detectable. Interestingly, binding assays with membrane fragments prepared from cells expressing AChBP(ring)/5HT(3A) showed a decrease in the apparent affinity for the agonists nicotine and epibatidine (5-fold), concomitant with an increase in the proportion of high-affinity sites (48 +/- 1 nM) for alpha-bungarotoxin. These results indicate that fusion of AChBP to an ion channel forms a pentameric receptor exposed to the cell surface and able to convert between discrete allosteric states, but stabilized in a high affinity state for epibatidine that likely corresponds to a desensitized form of LGICs. These artificial chimeras might offer a useful system to investigate signal transduction in LGICs.  相似文献   

7.
Pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine, glycine, γ-aminobutyric acid GABAA/C receptors, and the Gloeobacter violaceus ligand-gated ion channel (GLIC), are receptors that contain multiple allosteric binding sites for a variety of therapeutics, including general anesthetics. Here, we report the x-ray crystal structure of the Erwinia chrysanthemi ligand-gated ion channel (ELIC) in complex with a derivative of chloroform, which reveals important features of anesthetic recognition, involving multiple binding at three different sites. One site is located in the channel pore and equates with a noncompetitive inhibitor site found in many pLGICs. A second transmembrane site is novel and is located in the lower part of the transmembrane domain, at an interface formed between adjacent subunits. A third site is also novel and is located in the extracellular domain in a hydrophobic pocket between the β7–β10 strands. Together, these results extend our understanding of pLGIC modulation and reveal several specific binding interactions that may contribute to modulator recognition, further substantiating a multisite model of allosteric modulation in this family of ion channels.  相似文献   

8.
Cys-loop receptors (CLR) are pentameric ligand-gated ion channels that mediate fast excitatory or inhibitory transmission in the nervous system. Strychnine and d-tubocurarine (d-TC) are neurotoxins that have been highly instrumental in decades of research on glycine receptors (GlyR) and nicotinic acetylcholine receptors (nAChR), respectively. In this study we addressed the question how the molecular recognition of strychnine and d-TC occurs with high affinity and yet low specificity towards diverse CLR family members. X-ray crystal structures of the complexes with AChBP, a well-described structural homolog of the extracellular domain of the nAChRs, revealed that strychnine and d-TC adopt multiple occupancies and different ligand orientations, stabilizing the homopentameric protein in an asymmetric state. This introduces a new level of structural diversity in CLRs. Unlike protein and peptide neurotoxins, strychnine and d-TC form a limited number of contacts in the binding pocket of AChBP, offering an explanation for their low selectivity. Based on the ligand interactions observed in strychnine- and d-TC-AChBP complexes we performed alanine-scanning mutagenesis in the binding pocket of the human α1 GlyR and α7 nAChR and showed the functional relevance of these residues in conferring high potency of strychnine and d-TC, respectively. Our results demonstrate that a limited number of ligand interactions in the binding pocket together with an energetic stabilization of the extracellular domain are key to the poor selective recognition of strychnine and d-TC by CLRs as diverse as the GlyR, nAChR, and 5-HT(3)R.  相似文献   

9.
Conotoxins (Ctx) form a large family of peptide toxins from cone snail venoms that act on a broad spectrum of ion channels and receptors. The subgroup alpha-Ctx specifically and selectively binds to subtypes of nicotinic acetylcholine receptors (nAChRs), which are targets for treatment of several neurological disorders. Here we present the structure at a resolution of 2.4 A of alpha-Ctx PnIA (A10L D14K), a potent blocker of the alpha(7)-nAChR, bound with high affinity to acetylcholine binding protein (AChBP), the prototype for the ligand-binding domains of the nAChR superfamily. Alpha-Ctx is buried deep within the ligand-binding site and interacts with residues on both faces of adjacent subunits. The toxin itself does not change conformation, but displaces the C loop of AChBP and induces a rigid-body subunit movement. Knowledge of these contacts could facilitate the rational design of drug leads using the Ctx framework and may lead to compounds with increased receptor subtype selectivity.  相似文献   

10.
The nicotinic acetylcholine receptors (nAChRs) are a member of the ligand-gated ion channel family and play a key role in the transfer of information across neurological networks. The X-ray crystal structure of agonist-bound α(7) acetylcholine binding protein (AChBP) has been recognized as the most appropriate template to model the ligand-binding domain of nAChR for studying the molecular mechanism of the receptor-ligand interactions. Virtual screening of the National Cancer Institute diversity set, a library of 1990 compounds with nonredundant pharmacophore profiles, using AutoDock against AChBPs revealed 51 potential candidates. In vitro radioligand competition assays using [(3)H] epibatidine against the AChBPs from the freshwater snails, Lymnaea stagnalis, and from the marine species, Aplysia californica and the mutant (AcY55W), revealed seven compounds from the list of candidates that had micromolar to nanomolar affinities for the AChBPs. Further investigation on α(7)nAChR expressing in Xenopus oocytes and on the recombinant receptors with fluorescence resonance energy transfer (FRET)-based calcium sensor expressing in HEK cells showed that seven compounds were antagonists of α(7)nAChR, only one compound (NSC34352) demonstrated partial agonistic effect at low dose (10 μM), and two compounds (NSC36369 and NSC34352) were selective antagonists on α(7)nAchR with moderate potency. These hits serve as novel templates/scaffolds for development of more potent and specific in the AChR systems.  相似文献   

11.
Karlin A 《Neuron》2004,41(6):841-842
The snail acetylcholine binding protein (AChBP) is homologous to the extracellular domains of the nicotinic ACh receptors. In this issue of Neuron, Celie et al. show how the crystal structures of AChBP in complexes with carbamylcholine and nicotine reveal the basis for agonist recognition by ACh receptors.  相似文献   

12.
Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors that includes the nicotinic acetylcholine (nAChR), gamma-aminobutyric acid (GABA(A)), serotonin (5-HT(3)) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion channel, modulation from undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors shows aromatic residues, found in the acetylcholine or ligand-binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including those that are not formed by alpha subunits on the principal side of the transmitter binding site. The amino-terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine-binding protein (AChBP) from mollusks, an established structural and functional surrogate. We assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e. the non-alpha subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (K(d) 0.015-6 microM). We mutated the vicinal cysteine residues in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10-40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 A and 2.9 A resolution, respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit interface, a site presumed to be similar to that of modulating benzodiazepines on GABA(A) receptors.  相似文献   

13.
A large cytoplasmic domain accounts for approximately one-third of the entire protein of one superfamily of ligand-gated membrane ion channels, which includes nicotinic acetylcholine (nACh), gamma-aminobutyric acid type A (GABA(A)), serotonin type 3 (5-HT3), and glycine receptors. Desensitization is one functional feature shared by these receptors. Because most molecular studies of receptor desensitization have focused on the agonist binding and channel pore domains, relatively little is known about the role of the large cytoplasmic domain (LCD) in this process. To address this issue, we sequentially deleted segments of the LCD of the 5-HT3A receptor and examined the function of the mutant receptors. Deletion of a small segment that contains three amino acid residues (425-427) significantly slowed the desensitization kinetics of the 5-HT3A receptor. Both deletion and point mutation of arginine 427 altered desensitization kinetics in a manner similar to that of the (425-427) deletion without significantly changing the apparent agonist affinity. The extent of receptor desensitization was positively correlated with the polarity of the amino acid residue at 427: the desensitization accelerates with increasing polarity. Whereas the R427L mutation produced the slowest desensitization, it did not significantly alter single channel conductance of 5-HT3A receptor. Thus, the arginine 427 residue in the LCD contributes to 5-HT3A receptor desensitization, possibly through forming an electrostatic interaction with its neighboring residues. Because the polarity of the amino acid residue at 427 is highly conserved, such a desensitization mechanism may occur in other members of the Cys-loop family of ligand-gated ion channels.  相似文献   

14.
The muscle nicotinic acetylcholine receptor (AChR) is the prototype of the ligand-gated ion channels (or Cys-loop receptors), formed by 5 homologous subunits (alpha(2)betagammadelta or alpha(2)betagammavarepsilon), and is the major autoantigen in the autoimmune disease, myasthenia gravis. Previously, we expressed the wild-type extracellular domain (ECD) of the gamma-subunit (gammaECD) of the AChR in yeast Pichia pastoris at 0.3-0.8 mg/L, in soluble but microaggregate form, to use as starting material for structural and antigenicity studies. To optimize these characteristics, we constructed and characterized four gammaECD variants: (a) mutants-1 (gammaC61S) and -2 (gammaC106S-C115S), where the non-conserved Cys of gammaECD were replaced by serines, (b) mutant-3 (gammaCysLoop), where the gamma Cys-loop region was substituted by the cognate region of the acetylcholine binding protein (AChBP) and (c) mutant-4 (gammaCysLoop-C106S-C115S), where both the C106S-C115S and Cys-loop mutations were combined. None of mutants-1 and -2 displayed any improvement, while mutant-3 and -4 were mostly in dimeric form and expressed at much higher levels (2.5 mg/L and 3.5 mg/L respectively). All four mutants and wild-type gammaECD were recognized by sera from myasthenic patients, but mutants-3 and -4 exhibited higher efficiency, compared to wild-type or mutants-1 and -2. These results suggest that the substitution of the Cys-loop region of any AChR ECD with the AChBP counterpart leads to AChR ECD of improved conformation, more suitable for structural and therapeutic studies.  相似文献   

15.
Sequence and predicted structural similarities between members of the Cys loop superfamily of ligand-gated ion channel receptors and the acetylcholine binding protein (AChBP) suggest that the ligand-binding site is formed by six loops that intersect at subunit interfaces. We employed site-directed mutagenesis to investigate the role of amino acids from the loop C region of the murine 5-HT(3AS)R in interacting with two structurally different agonists, serotonin (5-HT) and m-chlorophenylbiguanide (mCPBG). Mutant receptors were evaluated using radioligand binding, two-electrode voltage clamp, and immunofluorescence studies. Electrophysiological assays were employed to identify changes in response characteristics and relative efficacies of mCPBG and the partial agonist, 2-methyl 5-HT (2-Me5-HT). We have also constructed novel 5-HT and mCPBG docked models of the receptor binding site based on homology models of the AChBP. Both ligand-docked models correlate well with results from mutagenesis and electrophysiological assays. Four key amino acids were identified as being important to ligand binding and/or gating of the receptor. Among these, I228 and D229 are specific for effects mediated by 5-HT compared to mCPBG, indicating a differential interaction of these ligands with loop C. Residues F226 and Y234 are important for both 5-HT and mCPBG interactions. Mutations at F226, I228, and Y234 also altered the relative efficacies of agonists, suggesting a role in the gating mechanism.  相似文献   

16.
Hibbs RE  Johnson DA  Shi J  Hansen SB  Taylor P 《Biochemistry》2005,44(50):16602-16611
The three-fingered alpha-neurotoxins have played a pivotal role in elucidating the structure and function of the muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChRs). To advance our understanding of the alpha-neurotoxin-nAChR interaction, we examined the flexibility of alpha-neurotoxin bound to the acetylcholine-binding protein (AChBP), which shares structural similarity and sequence identities with the extracellular domain of nAChRs. Because the crystal structure of five alpha-cobratoxin molecules bound to AChBP shows the toxins projecting radially like propeller "blades" from the perimeter of the donut-shaped AChBP, the toxin molecules should increase the frictional resistance and thereby alter the hydrodynamic properties of the complex. alpha-Bungarotoxin binding had little effect on the frictional coefficients of AChBP measured by analytical ultracentrifugation, suggesting that the bound toxins are flexible. To support this conclusion, we measured the anisotropy decay of four site-specifically labeled alpha-cobratoxins (conjugated at positions Lys(23), Lys(35), Lys(49), and Lys(69)) bound to AChBP and free in solution and compared their anisotropy decay properties with fluorescently labeled cysteine mutants of AChBP. The results indicated that the core of the toxin molecule is relatively flexible when bound to AChBP. When hydrodynamic and anisotropy decay analyses are taken together, they establish that only one face of the second loop of the alpha-neurotoxin is immobilized significantly by its binding. The results indicate that bound alpha-neurotoxin is not rigidly oriented on the surface of AChBP but rather exhibits segmental motion by virtue of flexibility in its fingerlike structure.  相似文献   

17.
The ligand-gated ion channel superfamily of neurotransmitter receptors are proteins responsible for rapid transmission of nerve impulses at the synapse and have, therefore, been the subject of intensive research for many years. The cys-loop family, of which the 5-HT3 receptor is a member, includes the nicotinic acetylcholine receptor, the GABAA receptor and the glycine receptor. A diverse range of endogenous and artificial ligands activate these receptors, but, nevertheless, the family shares many similarities of structure and function. Several important questions, however, still remain to be determined, including the mechanism of agonist recognition at the binding site, the nature of the connection between the agonist binding and channel domains, the structure of the transmembrane regions and the mechanism of ion permeation and selectivity. This article reviews recent advances in the characterization of the molecular properties of the 5-HT3 receptor and their role in its function, and assesses its suitability as a model system for the study of the above questions.  相似文献   

18.
Molecular studies of the neuronal nicotinic acetylcholine receptor family   总被引:16,自引:0,他引:16  
Nicotinic acetylcholine receptors on neurons are part of a gene family that includes nicotinic acetylcholine receptors on skeletal muscles and neuronal alpha bungarotoxin-binding proteins that in many species, unlike receptors, do not have an acetylcholine-regulated cation channel. This gene superfamily of ligand-gated receptors also includes receptors for glycine and gamma-aminobutyric acid. Rapid progress on neuronal nicotinic receptors has recently been possible using monoclonal antibodies as probes for receptor proteins and cDNAs as probes for receptor genes. These studies are the primary focus of this review, although other aspects of these receptors are also considered. In birds and mammals, there are subtypes of neuronal nicotinic receptors. All of these receptors differ from nicotinic receptors of muscle pharmacologically (none bind alpha bungarotoxin, and some have very high affinity for nicotine), structurally (having only two types of subunits rather than four), and, in some cases, in functional role (some are located presynaptically). However, there are amino acid sequence homologies between the subunits of these receptors that suggest the location of important functional domains. Sequence homologies also suggest that the subunits of the proteins of this family all evolved from a common ancestral protein subunit. The ligand-gated ion channel characteristic of this superfamily is formed from multiple copies of homologous subunits. Conserved domains responsible for strong stereospecific association of the subunits are probably a fundamental organizing principle of the superfamily. Whereas the structure of muscle-type nicotinic receptors appears to have been established by the time of elasmobranchs and has evolved quite conservatively since then, the evolution of neuronal-type nicotinic receptors appears to be in more rapid flux. Certainly, the studies of these receptors are in rapid flux, with the availability of monoclonal antibody probes for localizing, purifying, and characterizing the proteins, and cDNA probes for determining sequences, localizing mRNAs, expressing functional receptors, and studying genetic regulation. The role of nicotinic receptors in neuromuscular transmission is well understood, but the role of nicotinic receptors in brain function is not. The current deluge of data using antibodies and cDNAs is beginning to come together nicely to describe the structure of these receptors. Soon, these techniques may combine with others to better reveal the functional roles of neuronal nicotinic receptors.  相似文献   

19.
The ligand-gated ion channel superfamily of neurotransmitter receptors are proteins responsible for rapid transmission of nerve impulses at the synapse and have, therefore, been the subject of intensive research for many years. The cys-loop family, of which the 5-HT3 receptor is a member, includes the nicotinic acetylcholine receptor, the GABAA receptor and the glycine receptor. A diverse range of endogenous and artificial ligands activate these receptors, but, nevertheless, the family shares many similarities of structure and function. Several important questions, however, still remain to be determined, including the mechanism of agonist recognition at the binding site, the nature of the connection between the agonist binding and channel domains, the structure of the transmembrane regions and the mechanism of ion permeation and s electivity. This article reviews recent advances in the characterization of the molecular properties ofthe 5-HT3 receptor and their role in its function, and assesses its suitability as a model system for the study of the above questions.  相似文献   

20.
The determinants of charge selectivity of the Cys-loop family of ligand-gated ion channels have been studied for more than a decade. The investigations have mainly covered homomeric receptors e.g. the nicotinic acetylcholine receptor alpha7, the glycine receptor alpha1 and the serotonin receptor 5-HT(3A). Only recently, the determinants of charge selectivity of heteromeric receptors have been addressed for the GABA(A) receptor alpha2beta3gamma2. For all receptor subtypes, the selectivity determinants have been located to an intracellular linker between transmembrane domains M1 and M2. Two features of the M1-M2 linker appear to control ion selectivity. A central role for charged amino acid residues in selectivity has been almost universally observed. Furthermore, recent studies point to an important role of the size of the narrowest constriction in the pore. In the present review, these determinants of charge selectivity of the Cys-loop family of ligand-gated ion channels will be discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号