首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The experiments presented herein were designed to identify members of the G protein-coupled receptor kinase (GRK) family that participate in the agonist-induced phosphorylation and internalization of the rat FSH receptor (rFSHR). Western blots of human kidney 293 cells (the cell line used in transfection experiments) and MSC-1 cells (a cell line derived from Sertoli cells that displays many of the differentiated functions of their normal counterparts) reveal the presence of GRK2 and GRK6 in both cell lines as well as GRK4 in MSC-1 cells. Cotransfection of 293 cells with the rFSHR and GRK2, GRK4alpha, or GRK6 resulted in an increase in the agonist-induced phosphorylation of the rFSHR. Cotransfections of the rFSHR with GRKs or arrestin-3 enhanced the agonist-induced internalization of the rFHSR, and combinations of GRKs and arrestin-3 were more effective than the individual components. To characterize the involvement of endogenous GRKs on phosphorylation and internalization, we inhibited endogenous GRK2 by overexpression of a kinase-deficient mutant of GRK2 or G alpha t, a scavenger of G betagamma. We also inhibited endogenous GRK6 by overexpression of a kinase-deficient mutant of GKR6. All three constructs were effective inhibitors of phosphorylation, but only the kinase-deficient mutant of GRK2 and G alpha t inhibited internalization. The inhibition of internalization induced by these two constructs was less pronounced than that induced by a dominant-negative mutant of the nonvisual arrrestins, however. The finding that inhibitors of GRK2 and GRK6 impair phosphorylation, but only the inhibitors of GRK2 impair internalization, suggests that different GRKs have differential effects on receptor internalization.  相似文献   

2.
The amino acid sequences of the human (h) and rat (r) lutropin/choriogonadotropin receptors (LHR) are 87% identical, but the rate of agonist-induced internalization of the hLHR is approximately 7 times faster than that of the rLHR. Chimeras of the hLHR and the rLHR showed that this rate is dictated by the serpentine domain and the cytoplasmic tail. Further mutational analysis identified seven residues, two adjacent residues in the second intracellular loop (Val/Gln in the rLHR and Ile/His in the hLHR), four non-contiguous residues in the third intracellular loop (Arg/Gln/Thr/Pro in the rLHR and Lys/Arg/Met/Thr in the hLHR), and one in the C-terminal tail (Leu in the rLHR and Phe in the hLHR), that are necessary and sufficient to impart the slow rate of internalization of the rLHR and the fast rate of internalization of the hLHR. The internalization of the rLHR and the hLHR display different sensitivities to the non-visual arrestins. Therefore, we also tested if the simultaneous exchange of these seven residues resulted in the exchange of this property. Since this was found to be the case, we propose that these seven residues identified here form a non-visual arrestin-binding site.  相似文献   

3.
We have shown in a previous study that desensitization and internalization of the human dopamine D(1) receptor following short-term agonist exposure are mediated by temporally and biochemically distinct mechanisms. In the present study, we have used site-directed mutagenesis to remove potential phosphorylation sites in the third intracellular loop and carboxyl tail of the dopamine D(1) receptor to study these processes. Mutant D(1) receptors were stably transfected into Chinese hamster ovary cells, and kinetic parameters were measured. Mutations of Ser/Thr residues to alanine in the carboxyl tail demonstrated that the single substitution of Thr-360 abolished agonist-induced phosphorylation and desensitization of the receptor. Isolated mutation of the adjacent glutamic acid Glu-359 also abolished agonist-induced phosphorylation and desensitization of the receptor. These data suggest that Thr-360 in conjunction with Glu-359 may comprise a motif necessary for GRK2-mediated phosphorylation and desensitization. Agonist-induced internalization was not affected with mutation of either the Thr-360 or the Glu-359 residues. However, receptors with Ser/Thr residues mutated in the distal carboxyl tail (Thr-446, Thr-439, and Ser-431) failed to internalize in response to agonist activation, but were able to desensitize normally. These results indicate that agonist-induced desensitization and internalization are regulated by separate and distinct serine and threonine residues within the carboxyl tail of the human dopamine D(1) receptor.  相似文献   

4.
Multiple conformations of amino acid residues in ribonuclease A   总被引:1,自引:0,他引:1  
The highly refined 1.26 A structure (R = 0.15) of phosphate-free bovine pancreatic ribonuclease A was modeled with 13 residues having discrete multiple conformations of side chains. These residues are widely distributed over the protein surface, but only one of them, Lys 61, is involved in crystal packing interactions. The discrete conformers have no unusual torsion angles, and their interactions with the solvent and with other atoms of the protein are similar to those residues modeled with a single conformation. For three of the residues--Val 43, Asp 83, and Arg 85--two correlated conformations are found. The observed multiple conformations on the protein surfaces will be of significance in analyzing structure-function relationships and in performing protein engineering.  相似文献   

5.
We have reevaluated the sequence of porcine follicle-stimulating hormone (pFSH) with more recent protein-sequencing methodology. This has led to revision of the earlier proposed sequence. As with almost all reported gonadotropin -subunits, NH2-terminal heterogeneity was found in the porcine FSH -subunit (FSH), starting with residue Phe (1), Asp (3), Gly (4), or Thr (7). In the -subunit, there were found to be at least two molecular species, starting with residue Asn (1) (minor 20%) or Cys (3) (major 80%) as NH2-terminal and ending at residue Glu (108) as COOH-terminal. The net effect of the present revisions is to increase the homology of pFSH with other reported follitropin sequences. Apparent differences in the half-cystine placements in a previous proposal for pFSH compared with other species of FSH are no longer tenable. The half-cystine placements thus remain a constant structural feature throughout the gonadotropin hormones (choriogonadotropin, follitropin, and lutropin).  相似文献   

6.
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is an important mechanism for regulating signaling transduction of functional receptors at the plasma membrane. We demonstrate here that both caveolae/lipid-rafts- and clathrin-coated-pits-mediated pathways were involved in agonist-induced endocytosis of the cannabinoid type 1 receptor (CB1R) in stably transfected human embryonic kidney (HEK) 293 cells and that the internalized receptors were predominantly sorted into recycling pathway for reactivation. The treatment of CB1 receptors with the low endocytotic agonist Δ9-THC induced a faster receptor desensitization and slower resensitization than the high endocytotic agonist WIN 55,212-2. In addition, the blockade of receptor endocytosis or recycling pathway markedly enhanced agonist-induced CB1 receptor desensitization. Furthermore, co-expression of phospholipase D2, an enhancer of receptor endocytosis, reduced CB1 receptor desensitization, whereas co-expression of a phospholipase D2 negative mutant significantly increased the desensitization after WIN 55,212-2 treatment. These findings provide evidences for the importance of receptor endocytosis in counteracting CB1 receptor desensitization by facilitating receptor reactivation. Moreover, in primary cultured neurons, the low endocytotic agonist Δ9-THC or anandamide exhibited a greater desensitization of endogenous CB1 receptors than the high endocytotic agonist WIN 55,212-2, CP 55940 or 2-arachidonoyl glycerol, indicating that cannabinoids with high endocytotic efficacy might cause reduced development of cannabinoid tolerance to some kind cannabinoid-mediated effects.  相似文献   

7.
Dopamine receptors are G-protein-coupled receptors involved in the control of motivation, learning, and fine-tuning of motor movement, as well as modulation of neuroendocrine signalling. Stimulation of G-protein-coupled receptors normally results in attenuation of signalling through desensitization, followed by internalization and down-regulation of the receptor. These processes allow the cell to regain homeostasis after exposure to extracellular stimuli and offer protection against excessive signalling.Here, we have investigated the agonist-mediated attenuation properties of the dopamine D4 receptor.We found that several hallmarks of signal attenuation such as receptor phosphorylation, internalization and degradation showed a blunted response to agonist treatment. Moreover, we did not observe recruitment of β-arrestins upon D4 receptor stimulation. We also provide evidence for the constitutive phosphorylation of two serine residues in the third intracellular loop of the D4 receptor.These data demonstrate that, when expressed in CHO, HeLa and HEK293 cells, the human D4 receptor shows resistance to agonist-mediated internalization and down-regulation. Data from neuronal cell lines, which have been reported to show low endogenous D4 receptor expression, such as the hippocampal cell line HT22 and primary rat hippocampal cells, further support these observations.  相似文献   

8.
The extent of agonist-induced down-regulation of the LH/CG receptor (LHR) in human kidney 293 cells transfected with the rat LHR (rLHR) is much lower than in two Leydig tumor cell lines (MA-10 and R2C) that express the rodent LHR endogenously. This difference can not be attributed to differences in the recycling of internalized receptors, or in the replenishment of new receptors at the cell surface. It can be correlated, however, with the half-life of internalization of the bound agonist, which is approximately 60 min in Leydig tumor cells and about 100 min in transfected 293 cells. To determine whether the rate of internalization of the bound agonist affects down-regulation, we compared these two parameters in 293 cells expressing four rLHR mutants that enhance internalization and three mutants that impair internalization. We show that all four mutations of the rLHR that enhanced internalization enhanced down-regulation, while only one of the three mutations that impaired internalization impaired down-regulation. In addition, cotransfections of 293 cells with the rLHR-wt and three constructs that enhanced internalization (G protein-coupled receptor kinase 2, beta-arrestin, and arrestin-3) increased down-regulation, while a related construct (visual arrestin) that had no effect on internalization also had no effect on down-regulation. We conclude that the rate of internalization of the agonist-LHR complex is the main determinant of the extent of down-regulation of the LHR.  相似文献   

9.
A collaborative study from two laboratories has been undertaken to re-evaluate the human follitropin -subunit sequence (hFSH), since areas of uncertainty remain in the wake of two earlier reports. The first report was by Shome and Parlow (1974). The second, by Saxena and Rathnam (1976), proposed revisions for sequence not definitively placed in the first study, as well as some differences in other placements. We have re-examined the sequence of the hFSH with more recent methodology. This has led to revision of certain areas of the sequence and resolution of differences between the two earlier proposals. Specifically, an-Ile-Ser- is established at 21–22, Asp at 41, Arg at 44, Lys at 46, and Glu at 111. These were areas of disagreement in the earlier proposals. A definitive placement of the residues around tryptophan-27 has now been obtained by three laboratories. C-terminal heterogeneity was observed with subunits ending at residue 107, 109, or 111. N-terminal heterogeneity has been observed in all preparations examined to date. A significant population of molecules with a proteolytic nick between residues 38–39 is noted. This is very likely an artifact of the collection and processing. The preparations examined in the present studies showed no evidence of residues 112–118 proposed by Saxena and Rathnam.  相似文献   

10.
11.
In myasthenia gravis a highly conserved area of the nicotinic receptor (AcChR) dominates the autoantibody response (main immunogenic region, MIR), and it is formed by residues within the sequence segment 67-76 of the AcChR alpha-subunit. We have studied the binding of eight anti-MIR mAb to synthetic peptides containing the sequence segment 67-76 of the human alpha-subunit, and peptide analogues containing single residue substitutions of this sequence. We used also a peptide where both Asp70 and Asp71 were substituted by glycine residues. The binding of six anti-MIR mAb was strongly influenced by several substitutions. All these mAb required residues Asn68, and Pro69 for binding. Five of them required also Asp71 and Tyr72. Substitution of Asp70, which is an Ala residue in Torpedo AcChR, was irrelevant for the binding of an anti-Torpedo and an anti-Electrophorus mAb, and moderately reduced the binding of an anti-human mAb (no. 203). Substitution of Trp67 moderately reduced the binding of some of these mAbs. A mAb of this group (the antihuman mAb no. 198) bound in a manner only slightly influenced by ionic strength, whereas the binding of the other five mAb of this group was very sensitive to the ionic strength. Two anti-Electrophorus MIR mAb bound similarly to all peptide analogues in low ionic strength. At high ionic strength only the peptide analogue where Asp 70 was changed to a Gly residue bound significantly. This may indicate that the Electrophorus MIR has an uncharged residue at this position, as does Torpedo AcChR. Residues at position 73, 74, 75, and 76 were of little or no importance for the binding of all anti-MIR mAb. A free amino terminus was essential for the binding of most mAb. The results of competition experiments between different peptides and native AcChR for mAb binding were consistent with those obtained in direct binding experiments.  相似文献   

12.
13.
When exposed to vasoactive intestinal peptide (VIP), the human wild type VPAC1 receptor expressed in Chinese hamster ovary (CHO) cells is rapidly phosphorylated, desensitized, and internalized in the endosomal compartment and is not re-expressed at the cell membrane within 2 h after agonist removal. The aims of the present work were first to correlate receptor phosphorylation level to internalization and recycling, measured by flow cytometry and in some cases by confocal microscopy using a monoclonal antibody that did not interfere with ligand binding, and second to identify the phosphorylated Ser/Thr residues. Combining receptor mutations and truncations allowed identification of Ser250 (in the second intracellular loop), Thr429, Ser435, Ser448 or Ser449, and Ser455 (all in the distal part of the C terminus) as candidates for VIP-stimulated phosphorylation. The effects of single mutations were not additive, suggesting alternative phosphorylation sites in mutated receptors. Replacement of all of the Ser/Thr residues in the carboxyl-terminal tail and truncation of the domain containing these residues completely inhibited VIP-stimulated phosphorylation and receptor internalization. There was, however, no direct correlation between receptor phosphorylation and internalization; in some truncated and mutated receptors, a 70% reduction in phosphorylation had little effect on internalization. In contrast to results obtained on the wild type and all of the mutated or truncated receptors that still underwent phosphorylation, internalization of the severely truncated receptor was reversed within 2 h of incubation in the absence of the agonist. Receptor recovery was blocked by monensin, an endosome inhibitor.  相似文献   

14.
Shiina T  Nagao T  Kurose H 《Life sciences》2001,68(19-20):2251-2257
It has been reported that beta-arrestin is essential for the internalization of many G protein-coupled receptors. Since beta1-adrenergic receptor (beta1AR) shows the resistance to agonist-induced internalization, we examine the interaction of beta-arrestin with beta1AR with three different approaches: translocation of beta-arrestin to the plasma membrane, direct binding of in vitro translated beta-arrestin to intracellular domains of beta1- and beta2ARs, inhibition of beta1- and beta2AR-stimulated adenylyl cyclase activities by beta-arrestin. The enhanced green fluorescent protein (EGFP)-tagged beta-arrestin 2 (beta-arrestin 2-GFP) translocates to and stays at the plasma membrane by beta2AR stimulation. Beta-arrestin 2-GFP also translocates to the plasma membrane upon beta1AR stimulation. However, it returns to the cytoplasm 10 - 30 min after agonist stimulation. The amount of beta-arrestin bound to the third intracellular loop and the carboxyl tail of beta1AR is lower than that of beta2AR. The fusion protein of beta-arrestin 1 with glutathione-S-transferase inhibits the beta1- and beta2AR-stimulated adenylyl cyclase activities. However, inhibition of the beta1AR-stimulated activity requires a higher amount of the fusion protein than that of the beta2AR-stimulated activity. These results suggest that affinity of beta1AR for beta-arrestins is lower than that of beta2AR, and explains the resistance to agonist-induced internalization. This conclusion is further supported by the finding that beta-arrestin can induce internalization of beta1AR when beta-arrestin 1 fused to the carboxyl tail of beta1AR.  相似文献   

15.
Transmissible spongiform encephalopathies (TSEs) are neurological diseases that are associated with the conversion of the normal host-encoded prion protein (PrP-sen) to an abnormal protease-resistant form, PrP-res. Transmission of the TSE agent from one species to another is usually inefficient and accompanied by a prolonged incubation time. Species barriers to infection by the TSE agent are of particular importance given the apparent transmission of bovine spongiform encephalopathy to humans. Among the few animal species that appear to be resistant to infection by the TSE agent are rabbits. They survive challenge with the human kuru and Creutzfeldt-Jakob agents as well as with scrapie agent isolated from sheep or mice. Species barriers to the TSE agent are strongly influenced by the PrP amino acid sequence of both the donor and recipient animals. Here we show that rabbit PrP-sen does not form PrP-res in murine tissue culture cells persistently infected with the mouse-adapted scrapie agent. Unlike other TSE species barriers that have been studied, critical amino acid residues that inhibit PrP-res formation are located throughout the rabbit PrP sequence. Our results suggest that the resistance of rabbits to infection by the TSE agent is due to multiple rabbit PrP-specific amino acid residues that result in a PrP structure that is unable to refold to the abnormal isoform associated with disease.  相似文献   

16.
丙型肝炎病毒( HCV)包膜E2蛋白氨基端的高变区1(HVR1)由27个氨基酸组成,是HCV蛋白中变异频率最高的肽段.HVR1含中和抗体表位,同时对HCV细胞侵入起重要作用,其结构与功能的关系目前尚不清楚.本研究对H77株包膜蛋白基因中的HVR1进行了一系列缺失突变,然后将突变体表达质粒与假病毒包装质粒共转染人胚肾(H...  相似文献   

17.
Antibodies are widely used not only as therapeutic agents but also as research tools and diagnostic agents, and extensive efforts have been made to generate antibodies that have higher affinity. It was recently reported that introduction of charged residues into the framework region of an antibody improved its affinity; however, the underlying molecular mechanism has not been elucidated. In this study, we used kinetic and thermodynamic analyses of the antibody–antigen interaction to investigate the molecular mechanism by which an antibody with introduced charged residues recognizes its antigen with higher affinity. The introduction of basic amino acid residues resulted in improvement of the affinity whereas the introduction of acidic residues weakened the interaction. For two mutant antigen-binding fragments (Fabs) with improved affinity (named K5- and R5-mutants), the balance between the association rate constant kon and the dissociation rate constant koff was distinct despite each mutant having the same number of charged residues. Moreover, thermodynamic analysis of the interactions in the transition state revealed a difference between the K5- and R5-mutants in terms of enthalpic energy change following formation of the encounter complex with the antigen. These results suggest that the affinity of the K5- and R5-mutants is improved by distinct mechanisms. Although the mutations destabilize the Fab and necessitate further studies, our strategy is expected to become a versatile and simple means to improve the affinity of antibodies to their antigens.  相似文献   

18.
19.
Sequence of amino acid residues in proteins   总被引:2,自引:0,他引:2  
  相似文献   

20.
Stability of the nicotinic acetylcholine receptor (AChR) at the cell surface is key to the correct functioning of the cholinergic synapse. Cholesterol (Chol) is necessary for homeostasis of AChR levels at the plasmalemma and for ion translocation. Here we characterize the endocytic pathway followed by muscle-type AChR in Chol-depleted cells (Chol(-)). Under such conditions, the AChR is internalized by a ligand-, clathrin-, and dynamin-independent mechanism. Expression of a dominant negative form of the small GTPase Rac1, Rac1N17, abolishes receptor endocytosis. Unlike the endocytic pathway in control CHO cells (1), accelerated AChR internalization proceeds even upon disruption of the actin cytoskeleton. Under Chol(-) conditions, AChR internalization is furthermore found to require the activity of Arf6 and its effectors Rac1 and phospholipase D. The Arf6-dependent mechanism may constitute the default endocytic pathway followed by the AChR in the absence of external ligands, membrane Chol levels acting as a key homeostatic regulator of cell surface receptor levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号