共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Denijn R. A. De Weger A. D. M. Van Mansfeld J. A. M. van Unnik C. J. M. Lips 《Histochemistry and cell biology》1992,97(1):33-37
Summary We investigated the localization of IAPP mRNA by means of in situ hybridization in tissue sections of rat pancreas. A 35S-labeled, IAPP-specific DNA probe — hybridized specifically in the islets of Langerhans. This localization was confirmed by immunohistochemical localization of insulin and IAPP polypeptides on adjacent tissue sections. Moreover, combined in situ hybridization of IAPP mRNA and immunohistochemistry of insulin and IAPP polypeptide on the same section, using insulin as specific marker shows the presence of IAPP mRNA in the islets of Langerhans.Abbreviations DNA
Deoxyribonucleic acid
- dpm
Disintegration per minute
- dCTP
Deoxycytidine triphosphate
- EDTA
Ethylene diamine tetraacetic acid
- IAPP
Islet amyloid polypeptide
- PBS
Phosphate buffered saline
- RNA
Ribonucleic acid
- SSC
Standard sodium citrate 相似文献
2.
Islet amyloid development in a mouse strain lacking endogenous islet amyloid polypeptide (IAPP) but expressing human IAPP 总被引:3,自引:0,他引:3
Westermark GT Gebre-Medhin S Steiner DF Westermark P 《Molecular medicine (Cambridge, Mass.)》2000,6(12):998-1007
BACKGROUND: Several mouse strains expressing human islet amyloid polypeptide (IAPP) have been created to study development of islet amyloid and its impact on islet cell function. The tendency to form islet amyloid has varied strongly among these strains by factors that have not been elucidated. Because some beta cell granule components are known to inhibit IAPP fibril formation in vitro, we wanted to determine whether a mouse strain expressing human IAPP but lacking the nonamyloidogenic mouse IAPP is more prone to develop islet amyloidosis. MATERIALS AND METHODS: Such a strain was created by cross-breeding a transgenic mouse strain and an IAPP null mouse strain. RESULTS: When fed a fat-enriched diet, male mice expressing only human IAPP developed islet amyloid earlier and to a higher extent than did mice expressing both human and mouse IAPP. Supporting these results, we found that mouse IAPP dose-dependently inhibits formation of fibrils from human IAPP. CONCLUSIONS: Female mice did not develop amyloid deposits, although small extracellular amorphous IAPP deposits were found in some islets. When cultivated in vitro, amyloid deposits occurred within 10 days in islets from either male or female mice expressing only human IAPP. The study shows that formation of islet amyloid may be dependent on the environment, including the presence or absence of fibril inhibitors or promoters. 相似文献
3.
Matveyenko AV Butler PC 《ILAR journal / National Research Council, Institute of Laboratory Animal Resources》2006,47(3):225-233
Blood glucose concentrations are maintained by insulin secreted from beta-cells located in the islets of Langerhans. There are approximately 2000 beta-cells per islet, and approximately one million islets of Langerhans scattered throughout the pancreas. The islet in type 2 diabetes mellitus (T2D) has deficient beta-cell mass due to increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Accumulating evidence implicates toxic IAPP oligomers in the mediation of beta-cell apoptosis in T2D. Humans, monkeys, and cats express an amyloidogenic toxic form of IAPP and spontaneously develop diabetes characterized by islet amyloid deposits. However, longitudinal studies of islet pathology in humans are impossible, and studies in nonhuman primates and cats are costly and impractical. Rodent IAPP is not amyloidogenic, thus commonly used rodent models of diabetes do not recapitulate islet pathology in humans. To investigate the diabetogenic role of human IAPP (h-IAPP), several mouse models and, more recently, a rat model transgenic for h-IAPP have been developed. Studies in these models have revealed that the toxic effect of h-IAPP on beta-cell apoptosis demonstrates a threshold-dependent effect. Specifically, increasing h-IAPP transgene expression by breeding or induction of insulin resistance leads to increased beta-cell apoptosis and diabetes. These transgenic rodent models for h-IAPP provide an opportunity to elucidate the mechanisms responsible for h-IAPP-induced beta-cell apoptosis further and to test novel approaches to the prevention and treatment of T2D. 相似文献
4.
Islet amyloid polypeptide (IAPP) in the gastrointestinal tract and pancreas of man and rat 总被引:5,自引:0,他引:5
Hirotaka Toshimori Rie Narita Masamitsu Nakazato Junko Asai Tomohiro Mitsukawa Kenji Kangawa Hisayuki Matsuo Shigeru Matsukura 《Cell and tissue research》1990,262(3):401-406
Summary An immunohistochemical study for islet amyloid polypeptide (IAPP) was made on the gastrointestinal (GI) tract and pancreas of man and rat, using antisera raised against a synthetic peptide of C-terminal human IAPP (24–37) and a synthetic peptide of rat IAPP (18–37). A large number of IAPP-immunoreactive cells were found in the pyloric antrum, and a small number in the body of the stomach in both man and rat. Cytoplasmic processes extended out from the bipolar peripheral region of the immunoreactive cells, rather like neuronal processes, and some appeared to make contact with other immunoreactive cells. In addition, small numbers of immunoreactive cells were also seen in the duodenum and rectum, whereas they were absent from the jejunum, ileum and large intestine. An examination was made for evidence of colocalization of IAPP-immunoreactive material with material immunoreactive for gastrin, somatostatin, vasoactive intestinal polypeptide, pancreatic polypeptide, insulin, and glucagon, but none was found. IAPP-immunoreactive cells were also found in the pancreas of non-diabetic and non-insulin-dependent diabetic patients, but they were completely absent from a patient with insulin-dependent diabetes mellitus despite the presence of IAPP in the plasma. The results of these studies suggest that the peptide may have a biological role in situ in the GI tract and, in addition to the pancreas, may be a possible source of plasma IAPP. 相似文献
5.
H C Fehmann V Weber R G?ke B G?ke R Eissele R Arnold 《Biochemical and biophysical research communications》1990,167(3):1102-1108
The effect of synthetic rat amylin (10,100,1000 pmol/l) on glucose (10 mmol/) and arginine (10 mmol/l) -stimulated islet hormone release from the isolated perfused rat pancreas and on amylase release from isolated pancreatic acini was investigated. Amylin stimulated the insulin release during the first (+76%) and the second secretion period (+42%) at 1 nmol/l. The first phase of the glucagon release was inhibited concentration dependently by amylin and completely suppressed during the second phase. Amylin diminished the somatostatin release in a concentration dependent manner. This effect was more pronounced at the first than the second secretion period (1 nmol amylin: 1 phase: -60%, 2.phase: -22%). Amylin was without any effect on basal and CCK stimulated amylase release from isolated rat pancreatic acini. Our data suggest amylin, a secretory product of pancreatic B-cells, as a peptide with approximately strong paracrine effects within the Langerhans islet. Therefore, amylin might be involved in the regulation of glucose homeostasis. 相似文献
6.
We investigated the localization of IAPP mRNA by means of in situ hybridization in tissue sections of rat pancreas. A 35S-labeled, IAPP-specific DNA probe--hybridized specifically in the islets of Langerhans. This localization was confirmed by immunohistochemical localization of insulin and IAPP polypeptides on adjacent tissue sections. Moreover, combined in situ hybridization of IAPP mRNA and immunohistochemistry of insulin and IAPP polypeptide on the same section, using insulin as specific marker shows the presence of IAPP mRNA in the islets of Langerhans. 相似文献
7.
Functional binding sites for [125I]IAPP and [125I]CGRP were solubilized from rat lung membranes with CHAPSO (10 mM). Rat IAPP had a higher affinity (Ki = 22.9 nM) for [125I]IAPP binding and rat CGRP (Ki = 0.904 nM) had a higher affinity for [125I]CGRP binding over related peptides. [125I]IAPP binding was unaffected by GTPγS, but [125I]CGRP binding was 50% inhibited, indicating solubilization of a G-protein-receptor complex for CGRP but not IAPP binding. Wheat germ agglutinin affinity columns gave a 25-fold purification of IAPP binding sites, but no CGRP binding sites were eluted from the column, indicating different patterns of glycosylation of the two sites. 相似文献
8.
Islet amyloid polypeptide (IAPP) does not inhibit glucose-stimulated insulin secretion from isolated perfused rat pancreas 总被引:4,自引:0,他引:4
T D O'Brien P Westermark K H Johnson 《Biochemical and biophysical research communications》1990,170(3):1223-1228
Islet amyloid polypeptide (IAPP) is a recently discovered pancreatic islet hormone which is stored with insulin in the secretory vesicles of beta cells. Several lines of evidence suggested that IAPP might affect glucose-stimulated insulin secretion and, therefore, might play a role in the development of impaired insulin secretion which is typical of type 2 diabetes. In this study, the effects of human IAPP (amide) on glucose-stimulated insulin secretion was evaluated in the isolated perfused rat pancreas. IAPP in concentrations from 5 x 10(-12) to 10(-7) M had no significant effects on insulin secretion. IAPP, therefore, does not appear to be a significant modulator of glucose-stimulated insulin secretion at concentrations that are physiologically relevant. 相似文献
9.
Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro 总被引:9,自引:0,他引:9
Kayed R Bernhagen J Greenfield N Sweimeh K Brunner H Voelter W Kapurniotu A 《Journal of molecular biology》1999,287(4):781-796
Amyloid aggregates have been recognized to be a pathological hallmark of several fatal diseases, including Alzheimer's disease, the prion-related diseases, and type II diabetes. Pancreatic amyloidosis is characterized by the deposition of amyloid consisting of islet amyloid polypeptide (IAPP). We followed the steps preceding IAPP insolubilization and amyloid formation in vitro using a variety of biochemical methods, including a filtration assay, far and near-UV circular dichroism (CD) spectropolarimetry, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and atomic force (AFM) and electron (EM) microscopy. IAPP insolubilization and amyloid formation followed kinetics that were consistent with the nucleation-dependent polymerization mechanism. Nucleation of IAPP amyloid formation with traces of preformed fibrils induced a rapid conformational transition into beta-sheets that subsequently aggregated into insoluble amyloid fibrils. Transition proceeded via a molten globule-like conformeric state with large contents of secondary structure, fluctuating tertiary and quaternary aromatic interactions, and strongly solvent-exposed hydrophobic patches. In the temperature denaturation pathway at 5 microM peptide, we found that this state was mostly populated at about 45 degrees C, and either aggregated rapidly into amyloid by prolonged exposure to this temperature, or melted into denaturated but still structured IAPP, when heated further to 65 degrees C. The state at 45 degrees C was also found to be populated at 4.25 M GdnHCl at 25 degrees C during GdnHCl-induced equilibrium denaturation, and was stable in solution for several hours before aggregating into amyloid fibrils. Our studies suggested that this amyloidogenic state was a self-associated form of an aggregation-prone, partially folded state of IAPP. We propose that this partially folded population and its self-associated forms are in a concentration-dependent equilibrium with a non-amyloidogenic IAPP conformer and may act as early, soluble precursors of beta-sheet and amyloid formation. Our findings on the molecular mechanism of IAPP amyloid formation in vitro should assist in gaining insight into the pathogenesis and inhibition of pancreatic amyloidosis and other amyloid-related diseases. 相似文献
10.
Complement can damage host tissue when overactivated. Evidence of complement self damage exists for Alzheimer disease (AD), age-related macular degeneration, type 1 diabetes mellitus (T1DM), and Parkinson disease (PD). Known complement activators include Abeta, found in AD, and IgG found in T1DM. We compared their complement activating ability in vitro with those of islet amyloid polypeptide (IAPP), which aggregates in the pancreas of T2DM, and alpha-synuclein (alpha-Syn), which aggregates in PD. We found that IAPP and the alternatively spliced alpha-Syn 112 form, but not full-length alpha-Syn 140, activated complement in vitro. Complement activation may contribute to death of insulin-secreting cells in T2DM or to neuronal death in Parkinson disease (PD) and related synucleinopathies where alpha-Syn 112 occurs. This suggests the possibility of anti-inflammatory treatment in these pathologies. It also suggests that blockers of complement activation may be an appropriate therapeutic target for a range of age-related degenerative diseases. 相似文献
11.
《生物化学与生物物理学报:生物膜》2018,1860(9):1734-1740
Islet amyloid polypeptide (IAPP) is a 37 residue intrinsically disordered protein whose aggregation is associated with Type II diabetes. Like most amyloids, it appears that the intermediate aggregates (“oligomers”) of IAPP are more toxic than the mature fibrils, and interaction with the cell membrane is likely to be an integral component of the toxicity. Here we probe the membrane affinity and the conformation of the peptide as a function of its aggregation state. We find that the affinity of the peptide for artificial lipid bilayers is more than 15 times higher in the small oligomeric state (hydrodynamic radius ~ 1.6 nm) compared to the monomeric state (hydrodynamic radius ~ 0.7 nm). Binding with RIN-m5F cell membranes also shows qualitatively similar behavior. The monomeric state, as determined by Forster Resonance Energy Transfer, has a much larger end to end distance than the oligomeric state, suggesting conformational change between the monomers and the oligomers. Raman and Infrared spectroscopic measurements show the presence of considerable alpha helical content in the oligomers, whereas the larger aggregates have largely beta sheet character. Therefore, the conformation of the small oligomers is distinct from both the smaller monomers and the larger oligomers, and this is associated with an enhanced membrane affinity. This provides a possible structural basis for the enhanced toxicity of amyloid oligomers. Such change is also reminiscent of amyloid beta, another aggregation prone amyloidogenic peptide, though the nature of the conformational change is quite different in the two cases. We infer that conformational change underlying oligomer formation is a key factor in determining the enhanced membrane affinity of disease causing oligomers, but the toxic “oligomer fold” may not be universal. 相似文献
12.
13.
14.
《生物化学与生物物理学报:生物膜》2018,1860(9):1810-1817
The dramatic expansion of nanotechnology applications, particularly the advent of nanomaterials and nanoparticles (NPs) into the consumer economy, have led to heightened awareness of their potential health risks. This study examines the impact of several NPs upon membrane-induced aggregation and bilayer interactions of the human Islet amyloid polypeptide (hIAPP). We report that several NPs – polymeric NPs, TiO2 NPs, and Au NPs displaying coating layers exhibiting different electrostatic charges - did not significantly interfere with the fibrillation process and fibril morphology of hIAPP, both in buffer or in biomimetic DMPC:DMPG vesicle solutions. Spectroscopic and microscopic analyses suggest, in fact, that the NPs promoted membrane-induced fibrillation. Importantly, we find that all the NPs examined, regardless of composition or surface properties, gave rise to more pronounced, synergistic bilayer interactions when co-incubated with hIAPP. NP-enhanced bilayer interactions of hIAPP might point to possible toxicity and pathogenicity risks of amyloidogenic peptides in the presence of NPs. 相似文献
15.
C Betsholtz V Svensson F Rorsman U Engstr?m G T Westermark E Wilander K Johnson P Westermark 《Experimental cell research》1989,183(2):484-493
We have cloned and sequenced a human islet amyloid polypeptide (IAPP) cDNA. A secretory 89 amino acid IAPP protein precursor is predicted from which the 37 amino acid IAPP molecule is formed by amino- and carboxyterminal proteolytic processing. The IAPP peptide is 43-46% identical in amino acid sequence to the two members of the calcitonin gene-related peptide (CGRP) family. Evolutionary conserved proteolytic processing sites indicate that similar proteases are involved in the maturation of IAPP and CGRP and that the IAPP amyloid polypeptide is identical to the normal proteolytic product of the IAPP precursor. A synthetic peptide corresponding to a carboxyteminal fragment of human IAPP is shown to spontaneously form amyloid-like fibrils in vitro. Antibodies against this peptide cross-react with IAPP from species that develop amyloid in pancreatic islets in conjunction with age-related diabetes mellitus (human, cat, racoon), but do not cross-react with IAPP from other tested species (mouse, rat, guinea pig, dog). Thus, a species-specific structural motif in the putative amyloidogenic region of IAPP is associated with both amyloid formation and the development of age-related diabetes mellitus. This provides a new molecular clue to the pathogenesis of this disease. 相似文献
16.
The putative hormone islet amyloid polypeptide (IAPP) induces impaired glucose tolerance in cats 总被引:2,自引:0,他引:2
K H Johnson T D O'Brien K Jordan C Betsholtz P Westermark 《Biochemical and biophysical research communications》1990,167(2):507-513
Islet amyloid polypeptide (IAPP) has been implicated by in vitro studies as an inhibitor of insulin-stimulated glucose utilization by skeletal muscle cells and also as an inhibitor of insulin-stimulated insulin secretion by beta cells. Increased expression and production of IAPP by beta cells, as has been suggested to occur in cats with impaired glucose tolerance, could thus contribute substantially to the development of the insulin resistance and impaired insulin release which are the hallmarks of Type 2 diabetes mellitus. The effects of IAPP with respect to glucose metabolism in living animals, however, have not been previously reported. In the present in vivo study we show that synthetic amidated IAPP induced impaired glucose tolerance in each of the 3 cats studied, with dramatic impairment (increases in glucose to T1/2 values of 124% and 234%) in 2 of the 3 cats. Impaired insulin responses were also evident in the 2 cats with the most dramatic states of glucose intolerance. These results provide the most direct evidence to-date that IAPP may have an important role in the development of Type 2 diabetes mellitus. 相似文献
17.
18.
Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species 总被引:7,自引:0,他引:7
C Betsholtz L Christmansson U Engstr?m F Rorsman V Svensson K H Johnson P Westermark 《FEBS letters》1989,251(1-2):261-264
Amyloid deposits in the islets of Langerhans occur in association with type 2 diabetes mellitus (DM) in humans and cats and consist of a 37-amino-acid polypeptide known as islet amyloid polypeptide (IAPP). In order to find an explanation for the situation that islet amyloid (IA) does not develop in common rodent species, we have deduced the amino acid sequence of the IAPP molecule in mouse, rat and hamster. We find that a specific region of the molecule diverges to a high degree. Synthetic peptides corresponding to this region of human and hamster IAPP were compared for their ability to form amyloid fibrils in vitro. Whereas the human peptide readily formed fibrils with amyloid character, the hamster peptide completely lacked this property. We suggest this to be a likely explanation for the differences in IA formation between humans and rodents and discuss our findings in relation to the type 2 DM syndrome. 相似文献
19.
Tenidis K Waldner M Bernhagen J Fischle W Bergmann M Weber M Merkle ML Voelter W Brunner H Kapurniotu A 《Journal of molecular biology》2000,295(4):1055-1071
Pancreatic amyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet-containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical amyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet-containing fibrils, whereas no amyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other amyloidosis-related diseases. 相似文献
20.
K H Johnson C Wernstedt T D O'Brien P Westermark 《Comparative biochemistry and physiology. B, Comparative biochemistry》1991,98(1):115-119
1. Islet amyloid isolated from the pancreas of a 20-year-old cougar (Felis concolor) was dissolved and purified by gel permeation and reversed phase HPLC for amino acid sequence analysis. 2. N-Terminal amino acid sequence analysis of the purified protein revealed a primary structure (positions 1-28) identical to islet amyloid polypeptide (IAPP) from domesticated cats. 3. IAPP from the cougar, like IAPP from the human and domesticated cat, incorporates an inherently amyloidogenic AILS sequence at positions 25-28. 相似文献