首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aberrant alternative splicing of key cellular regulators may play a pivotal role in cancer development. To investigate the potential influence of altered alternative splicing on the development of transitional cell carcinoma (TCC), splicing activity in the TCC cell lines TSGH8301 and BFTC905 was examined using the SV40-immortalized uroepithelial cell line SV-HUC-1 as a reference. Our results indicate a significant alteration in splice site selection in the TCC cell lines. By gene expression profiling and subsequent validation, we discovered that sex-determining region Y-box protein 2 (SOX2) is specifically upregulated in BFTC905. Furthermore, ectopic expression of SOX2 modulates alternative splicing of the splicing reporter in vivo. More significantly, using an in vitro pull-down assay, it was found that SOX2 exhibits RNA-binding capability. Our observations suggest that SOX2 modulates alternative splicing by functioning as a splicing factor.  相似文献   

2.
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.  相似文献   

3.
The role of U2AF35 and U2AF65 in enhancer-dependent splicing.   总被引:5,自引:1,他引:5       下载免费PDF全文
Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires interactions between the SR proteins and the 35-kDa subunit of U2AF (U2AF35). However, more recent experiments have not supported the U2AF recruitment model. Here we provide additional evidence for the recruitment model. First, we confirm that base substitutions that convert weak 3' splice sites to a consensus sequence, and therefore increase U2AF binding, relieve the requirement for a splicing activator. Second, we confirm that splicing activators are required for the formation of early spliceosomal complexes on substrates containing weak 3' splice sites. Most importantly, we find that splicing activators promote the binding of both U2AF65 and U2AF35 to weak 3' splice sites under splicing conditions. Finally, we show that U2AF35 is required for maximum levels of activator-dependent splicing. We conclude that a critical function of splicing activators is to recruit U2AF to the weak 3' splice sites of enhancer-dependent introns, and that efficient enhancer-dependent splicing requires U2AF35.  相似文献   

4.
5.
6.
7.
RNA干扰(RNA interference,RNA i)是由双链RNA(doub le-stranded RNA,dsRNA)引发的转录后基因沉默(posttran-scridptional gene silenc ing,PTGS)。dsRNA经D icer酶降解成21-23nt的siRNA,并以其为模板,特定位点、特定间隔降解与之序列相应的mRNA。随着RNA i机制的深入研究与广泛应用,目前该技术已经普遍应用于细胞周期研究中,在阐明各种调控机制的同时也为基因治疗提供了新靶点。  相似文献   

8.
Summary The major driving forces in the eukaryotic cell cycle are the cyclin-dependent kinases (Cdk). Cdks can be activated through dephosphorylation of inhibitory phosphorylations catalyzed by the Cdc25 phosphatase family. In higher-eukaryotic cells, there exist three Cdc25 family members, Cdc25A, Cdc25B, and Cdc25C. While Cdc25A plays a major role at the G1-to-S phase transition, Cdc25B and C are required for entry into mitosis. The regulation of Cdc25C is crucial for the operation of the DNA-damage checkpoint. Two protein kinases, Chk1 and Cds1, can be activated in response to DNA damage or in the presence of unreplicated DNA. Chk1 and Cds1 may phosphorylate Cdc25C to prevent entry into mitosis through inhibition of Cdc2 (Cdk1) dephosphorylation.  相似文献   

9.
10.
11.
N H Brown  D L King  M Wilcox  F C Kafatos 《Cell》1989,59(1):185-195
We report the characterization of a chromosomal integrin gene that encodes the Drosophila PS2 alpha subunit. The gene is composed of 12 exons spanning 31 kb. By employing a novel method for directed cDNA cloning, we have analyzed over 300 independent cDNA clones for the existence of alternate RNA products. Two forms of PS2 alpha mRNA are frequently observed: a canonical (C) form and a form lacking the 75 nucleotide exon 8 (m8). The relative ratio of these two forms varies widely during development. Although region A, derived from exon 8 and the adjacent 25 amino acids, shows weak conservation among the sequences of alpha subunits that bind to different ligands, it is highly conserved in the homologous PS2 alpha gene of the distantly related Mediterranean fruitfly. We suggest that the variable region A may be important in determining the specificity and affinity of integrin receptors for their ligands.  相似文献   

12.
13.
Comment on: Li A, et al. Nat Cell Biol 2011; 13:402-11.  相似文献   

14.
The Cdc25 family of protein phosphatases positively regulates cell division by activating cyclin-dependent protein kinases (CDKs). In humans and rodents, there are three Cdc25 family members--denoted Cdc25A, Cdc25B, and Cdc25C--that can be distinguished based on their subcellular compartmentalizations, their abundances and/or activities throughout the cell cycle, the CDKs that they target for activation, and whether they are overexpressed in human cancers. In addition, murine forms of Cdc25 exhibit distinct patterns of expression throughout development and in adult tissues. These properties suggest that individual Cdc25 family members contribute distinct biological functions in embryonic and adult cell cycles of mammals. Interestingly, mice with Cdc25C disrupted are healthy, and cells derived from these mice exhibit normal cell cycles and checkpoint responses. Cdc25B-/- mice are also generally normal (although females are sterile), and cells derived from Cdc25B-/- mice have normal cell cycles. Here we report that mice lacking both Cdc25B and Cdc25C are obtained at the expected Mendelian ratios, indicating that Cdc25B and Cdc25C are not required for mouse development or mitotic entry. Furthermore, cell cycles, DNA damage responses, and Cdc25A regulation are normal in cells lacking Cdc25B and Cdc25C. These findings indicate that Cdc25A, or possibly other phosphatases, is able to functionally compensate for the loss of Cdc25B and Cdc25C in mice.  相似文献   

15.
Cell-based genome-wide RNA interference screens are being used to address an increasingly broad spectrum of biological questions. In one recent screen, Drosophila cell cultures treated with double-stranded RNA were analyzed by flow cytometry, providing a wealth of new information and identifying 488 regulators of the cell cycle, cell size, and cell death.  相似文献   

16.
Pre-mRNA splicing factors are enriched in nuclear domains termed interchromatin granule clusters or nuclear speckles. During mitosis, nuclear speckles are disassembled by metaphase and reassembled in telophase in structures termed mitotic interchromatin granules (MIGs). We analysed the dynamics of the splicing factor SC35 in interphase and mitotic cells. In HeLa cells expressing green fluorescent protein (GFP)-SC35, this was localized in speckles during interphase and dispersed in metaphase. In telophase, GFP-SC35 was highly enriched within telophase nuclei and also detected in MIGs. Fluorescence recovery after photobleaching (FRAP) experiments revealed that the mobility of GFP-SC35 was distinct in different mitotic compartments. Interestingly, the mobility of GFP-SC35 was 3-fold higher in the cytoplasm of metaphase cells compared with interphase speckles, the nucleoplasm or MIGs. Treatment of cells with inhibitors of cyclin-dependent kinases (cdks) caused changes in the organization of nuclear compartments such as nuclear speckles and nucleoli, with corresponding changes in the mobility of GFP-SC35 and GFP-fibrillarin. Our results suggest that the dynamics of SC35 are significantly influenced by the organization of the compartment in which it is localized during the cell cycle.  相似文献   

17.
Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. However, decreasing Akt SUMOylation levels severely affects the role of this kinase as a regulator of fibronectin and Bcl-x alternative splicing. Moreover, we observed that the Akt mutant (Akt E17K) found in several human tumors displays increased levels of SUMOylation and also an enhanced capacity to regulate fibronectin splicing patterns. This splicing regulatory activity is completely abolished by decreasing Akt E17K SUMO conjugation levels. Additionally, we found that SUMOylation controls Akt regulatory function at G?/S transition during cell cycle progression. These findings reveal SUMO conjugation as a novel level of regulation for Akt activity, opening new areas of exploration related to the molecular mechanisms involved in the diverse cellular functions of this kinase.  相似文献   

18.
19.
20.
DNA damage induces cell cycle arrest (called the damage checkpoint), during which cells carry out actions for repair. A fission yeast protein, Crb2/Rhp9, which resembles budding yeast Rad9p and human BRCA1, promotes checkpoint by activating Chk1 kinase, which restrains Cdc2 activation. We show here that phosphorylation of the T215 Cdc2 site of Crb2 is required for reentering the cell cycle after the damage-induced checkpoint arrest. If this site is nonphosphorylatable, irradiated cells remain arrested, though damage is repaired, and maintain the phosphorylated state of Chk1 kinase. The T215 site is in vitro phosphorylated by purified Cdc2 kinase. Phosphorylation of T215 occurs intensely in response to DNA damage at a late stage, suggesting an antagonistic role of Cdc2 phosphorylation toward checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号