首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cryoloop is a technique where a thin nylon loop is used to suspend a film of cryoprotectant containing the oocytes and directly immersing them in liquid nitrogen. 508 bovine oocytes were collected, of these 351 were cryopreserved by slow freezing using standard straws or a new vitrification method using our self-constructed cryoloops and the remainder were controls. After thawing, the oocytes were inseminated by ICSI or standard IVF. The cryoloop vitrification method yielded a survival rate of 90.5% and the slow freezing technique a rate of 54.4% (p < 0.0001). When ICSI was performed, cryopreservation by the cryoloop vitrification method resulted in very similar cleavage rate to controls (16.0% vs. 17.3%) but slow freezing produced a slightly lower rate (9.4%). Cleavage rates after IVF in fresh oocytes was higher than the cryopreservation groups (49.5% vs. 15.4% and 25.8%), whereas after ICSI the rates were similar in all groups (17.3% vs. 9.4% and 16%). It is concluded that the new cryoloop vitrification technique followed by ICSI produce good embryo formation results and they could hold the future for effective oocyte cryopreservation.  相似文献   

2.
Oocyte cryopreservation is a potentially valuable technique for salvaging the germ-line when a valuable mare dies, but facilities for in vitro embryo production or oocyte transfer are not immediately available. This study examined the influence of maturation stage and freezing technique on the cryopreservability of equine oocytes. Cumulus oocyte complexes were frozen at the immature stage (GV) or after maturation in vitro for 30 hr (MII), using either conventional slow freezing (CF) or open pulled straw vitrification (OPS); cryoprotectant-exposed and untreated nonfrozen oocytes served as controls. After thawing, GV oocytes were matured in vitro, and MII oocytes were incubated for 0 or 6 hr, before staining to examine meiotic spindle quality by confocal microscopy. To assess fertilizability, CF MII oocytes were subjected to intracytoplasmic sperm injection (ICSI) and cultured in vitro. At 12, 24, and 48 hr after ICSI, injected oocytes were fixed to examine their progression through fertilization. Both maturation stage and freezing technique affected oocyte survival. The meiosis resumption rate was higher for OPS than CF for GV oocytes (28% vs. 1.2%; P < 0.05), but still much lower than for controls (66%). Cryopreserving oocytes at either stage induced meiotic spindle disruption (37%-67% normal spindles vs. 99% in controls; P < 0.05). Among frozen oocytes, however, spindle quality was best for oocytes frozen by CF at the MII stage and incubated for 6 hr post-thaw (67% normal); since this combination of cryopreservation/IVM yielded the highest proportion of oocytes reaching MII with a normal spindle (35% compared to <20% for other groups), it was used when examining the effects of cryopreservation on fertilizability. In this respect, the rate of normal fertilization for CF MII oocytes after ICSI was much lower than for controls (total oocyte activation rate, 26% vs. 56%; cleavage rate at 48 hr, 8% vs. 42%: P < 0.05). Thus, although IVM followed by CF yields a respectable percentage of normal-looking MII oocytes (35%), their ability to support fertilization is severely compromised.  相似文献   

3.
The cryopreservation of human oocytes is an important strategy to spare fertility in women submitted to gonadotoxic therapy, ovarian surgery, or even to allow gestation by assisted reproduction technology after natural ovarian senescence. Methods to predict oocyte resistance to cryopreservation are still based on qualitative morphological assessment. In this study we evaluated whether morphometric characteristics of mature oocytes before vitrification and after warming are related to successful fertilization by intracytoplasmic sperm injection (ICSI). This was a prospective cohort study including 28 infertile women and 71 oocytes. Morphometric assessments included oocyte diameter, perivitelline space (PS), zona pellucida (ZP) and first polar body (PB). Out of 49 warmed oocytes, 27 (55%) survived cryopreservation and their pre-vitrification measures were similar to those of the 22 oocytes that perished. However, the oocytes that eventually failed to be fertilized had undergone more enlargement of the total diameter (p = 0.029) and shrinking of the PS (p = 0.033) after cryopreservation, compared to oocytes that were successfully fertilized. These findings suggest that the morphometric characteristics of fresh oocytes do not predict their survival to vitrification, while fertilization failure is associated with oocyte enlargement and PS shrinking after cryopreservation.  相似文献   

4.
Effective cryopreservation of oocytes is critically needed in many areas of human reproductive medicine and basic science, such as stem cell research. Currently, oocyte cryopreservation has a low success rate. The goal of this study was to understand the mechanisms associated with oocyte cryopreservation through biophysical means using a mouse model. Specifically, we experimentally investigated the biomechanical properties of the ooplasm prior and after cryopreservation as well as the consequences of reversible dismantling of the F-actin network in mouse oocytes prior to freezing. The study was complemented with the evaluation of post-thaw developmental competence of oocytes after in vitro fertilization. Our results show that the freezing-thawing process markedly alters the physiological viscoelastic properties of the actin cytoskeleton. The reversible depolymerization of the F-actin network prior to freezing preserves normal ooplasm viscoelastic properties, results in high post-thaw survival and significantly improves developmental competence. These findings provide new information on the biophysical characteristics of mammalian oocytes, identify a pathophysiological mechanism underlying cryodamage and suggest a novel cryopreservation method.  相似文献   

5.
Oocytes cryopreservation as an important part of assisted reproductive technologies, which should ensure after warming not only intact oocyte morphological characteristics, but also their genetic apparatus stability. However, the meiotic spindle is very sensitive to the temperature fluctuations that can lead to unequal chromosome segregation during meiosis and as a consequence can cause embryo aneuploidy after oocyte fertilization. The aim of the study was to estimate the oocytes cryopreservation impact on human embryo chromosome aneuploidy. It has been shown that fertilization rate of the cryopreserved oocytes did not differ from fresh ones (83.1% vs 84% respectively). The number of blastocysts obtained from cryopreserved oocytes was less than that obtained from fresh oocytes, however, their morphological characteristics were better if compared the fresh oocytes. Our results showed different cryopreservation impact on aneuploidy rates of certain chromosomes in embryos obtained from cryopreserved oocytes. They had an increased aneuploidy of chromosome 13 and a decreased nondisjunction of chromosome 18 and sex chromosomes.  相似文献   

6.
Experiments were conducted to develop a simple rapid-freezing protocol for mature mouse oocytes that would yield a high proportion of oocytes with developmental potential. The effects of concentration (3.5, 4.5 and 6.0 M dimethyl sulfoxide (DMSO) all with 0.5 M sucrose) and the duration of exposure (2.5 min vs 45 sec) of oocytes to the cryoprotectant and its extraction after thawing in 2, 3 or 4 steps of descending sucrose concentration were studied. The most effective of the rapid-freezing and thawing protocols (4.5 M DMSO; 45 sec exposure and 3-step thawing) was compared to slow freezing protocols using 1.5 M DMSO and 1.0 M 1,2 propanediol as cryoprotectants. The DMSO concentrations had an effect on survival, fertilization and embryo development using short (45 sec) but not long (2.5 min) exposure. The rate of morphological oocyte survival was significantly higher using 4.5 M DMSO than 3.5 or 6.0 M (92% vs 82 and 73%, respectively). The development of fertilized embryos to blastocysts was also significantly higher at 4.5 M than at 3.5 or 6.0 M (68% vs 42 and 53%, respectively). The extraction of cryoprotectant in 3 or 4 steps of descending sucrose concentration resulted in higher survival (P < 0.01) and fertilization than in 2 steps. The best survival, fertilization and development was achieved with the 3-step procedure. Optimal combinations of conditions were 4.5 M DMSO at 45 sec prefreeze exposure and 3-step extraction of the cryoprotectant. Oocytes frozen by conventional methods had a survival, fertilization and development to blastocyst rate significantly lower than those frozen under the optimal rapid conditions. Thus rapid freezing of mature mouse oocytes with 4.5 M DMSO + 0.5 M sucrose and short prefreeze exposure is effective and has the additional advantage of being less time-consuming than slow freezing methods.  相似文献   

7.
This study is to investigate the change of morphology of the meiotic spindle and the extent of zona hardening relating to the morphological survival and developmental competence of thawed oocytes. Four- to 8-week-old female mice (C57BL/6) primed with an intraperitoneal injection of pregnant mare's serum gonadotropin and human chorionic gonadotropin. Cryopreserved oocytes using two protocols: vitrificaton using ethylene glycol (EG) and slow freezing using propanediol (PROH). The freezing oocytes were thawed and were fertilized and subsequently cultured in vitro. Spindle/chromosome imagery, dissolution of zona pellucida, and post-thawing survival and development were comparable between two groups. The vitrification cryopreservation method proved to be better than the slow-freezing protocol when comparing the frequency of normal-shaped spindle development post-thawing. The difference in the time required for the dissolution of the zona pellucida under treatment of pronase that was determined to exist between the two cryopreservation methods was statistically significant (P<0.005). The survival rate of post-thawed mature oocytes was significantly greater for the vitrification group than it was for the slow-freezing cryopreservation group (P=0.005). The vitrification cryopreservation of mature murine oocytes would appear to be more satisfactory than the slow controlled-rate freezing method as regards the post-thawing oocyte survival and also the incidence of the normal spindle apparatus in the ooplasm.  相似文献   

8.
Cryopreservation of female reproductive cells allows preservation of fertility and provides materials for research. Although freezing protocols have been optimized, and there is a high survival rate after thawing, the in vitro fertilization (IVF) pregnancy rate is still lower in cycles with cryopreserved oocytes, thus highlighting the importance of identifying intrinsic limiting factors characterizing the cells at time of freezing. The aim of the present study is to investigate in the mouse model the impact of reproductive aging and postovulatory aging on oocyte biological competence after vitrification. Metaphase II oocytes were vitrified soon after retrieval from young and reproductively old mice. Part of the oocytes from young animals was vitrified after 6 h incubation (in vitro aged oocytes). All classes of oocytes showed similar survival rate after vitrification. Moreover, vitrification did not alter chromosomal organization in young cells, whereas in vitro aged and old oocytes presented an increase of slightly aberrant metaphase configurations. Compared to fresh young oocytes, in vitro aged and old oocytes showed increased ROS levels which remained unchanged after vitrification. By contrast, cryopreservation significantly increased ROS production in young oocytes. Both the aging processes negatively impacted oocyte ability to undergo pronucleus formation and first cleavage after vitrification by stimulating cellular fragmentation. These results could be helpful for establishing the correct time table for cryopreservation in the laboratory routine and improving its application in reproductively old females. Moreover, our observations highlight the importance of oxidative stress protection during vitrification procedures.  相似文献   

9.
Oocyte cryopreservation in carnivores can significantly improve assisted reproductive technologies in animal breeding and preservation programs for endangered species. However, the cooling process severely affects the integrity and the survival of the oocyte after thawing and may irreversibly compromise its subsequent developmental capability.In the present study, two different methods of oocyte cryopreservation, slow freezing and vitrification, were evaluated in order to assess which of them proved more suitable for preserving the functional coupling with cumulus cells as well as nuclear and cytoplasmic competence after warming of immature feline oocytes.From a total of 422 cumulus enclosed oocytes (COCs) obtained from queens after ovariectomy, 137 were stored by vitrification in open pulled straws, 147 by slow freezing and 138 untreated oocytes were used as controls. Immediately after collection and then after warming, functional coupling was assessed by lucifer yellow injection and groups of fresh and cryopreserved oocytes were fixed to analyze tubulin and actin distribution, and chromatin organization. Finally, COCs cryopreserved with both treatments were matured in vitro after warming. In most cases, oocytes cryopreserved by slow freezing showed a cytoskeletal distribution similar to control oocytes, while the process of vitrification induced a loss of organization of cytoskeletal elements. The slow freezing protocol ensured a significantly higher percentage of COCs with functionally open and partially open communications (37.2 vs. 19.0) and higher maturational capability (32.5 vs. 14.1) compared to vitrified oocytes. We conclude that although both protocols impaired intercellular junctions, slow freezing represents a suitable method of GV stage cat oocytes banking since it more efficiently preserves the functional coupling with cumulus cells after thawing as well as nuclear and cytoplasmic competence. Further studies are needed to technically overcome the damage induced by the cryopreservation procedures on immature mammalian oocytes.  相似文献   

10.
This study was undertaken to assess dissection/puncture combined technique for collecting large number of oocytes from bovine ovaries and to determine the effect of ovarian tissue cryopreservation on the oocytes capability to undergo in vitro maturation, fertilization and subsequent embryonic development. Ovaries (n=31) of slaughtered cows were cut into small fragments using a scalpel blade and the ovarian tissues were randomly assigned to cryopreserved by slow freezing and vitrification and non cryopreserved (fresh) groups. Oocytes were collected from non-atretic follicles from fresh and post-thawing ovarian tissue by the puncture method. The advantage of this technique appeared through morphologically good quality cumulus-oocyte complex (COC) recovery rate from fresh tissue (31.7±2.0 oocytes/ovary). However, the cryopreservation affected the post thawing total and good quality COC recovery rates from slow freezing (26.6±2.0 and 23.5±2.3 oocytes/ovary, respectively) and vitrification groups (21.7±1.1 and 17.6±1.8 oocyte/ovary, respectively). The maturation rate resulted in significant differences between the fresh tissue (94.1±1.1%) and the two cryopreservation groups. Moreover, this rate was significantly higher in the slow freezing group (80.1±1.3%) than in the vitrification group (73.0±1.9%). No statistical differences were observed in the cleavage and the embryonic developmental rates between fresh tissue group and cryopreservation groups. Furthermore the number of embryos produced per animal was statistically higher for fresh tissues than for slow freezing and the vitrification groups (34.4±1.4, 27.8±3.1 and 22.0±0.7, respectively). In conclusion, dissection method followed by puncture of bovine ovaries greatly maximizes the number of good quality oocytes recovered, as well as the number of embryos obtained per animal. Ovarian tissue can be successfully cryopreserved by slow freezing and vitrification.  相似文献   

11.
Oocyte cryopreservation is an important technology in assisted reproduction and fertility preservation. However, the developmental potential of cryopreserved oocyte remains poor. Osmotic stress injury (OSI) during cryoprotectants (CPAs) loading and unloading steps has critical impact on successful cryopreservation. In order to minimize OSI to oocytes, a microfluidic device was designed and fabricated to achieve continuous CPA concentration change. MII porcine oocytes were loaded and unloaded CPAs with step-wise and microfluidic methods, oocyte volume changes were recorded and compared, loading and unloading duration of microfluidic methods were optimized. The survival and developmental rate of treated oocytes in step-wise and microfluidic linear methods were also evaluated. The results showed that oocyte volume changes with microfluidic method were obviously less than step-wise method, and the survival, cleavage and blastocyst rate of oocytes were 95.3%, 64.4%, and 19.4%, respectively, which were significantly higher than the traditional step-wise method (79.4%, 43.6%, and 9.7%) (p < 0.05). In conclusion, microfluidic device can effectively reduce the osmotic damage to oocytes and improve the survival rate and developmental rate of oocytes, which may provide a new path for oocyte cryopreservation.  相似文献   

12.
Men HS  Chen JC  Ji WZ  Shang EY  Yang SC  Zou RJ 《Theriogenology》1997,47(7):1423-1431
The cryopreservation of oocytes has been only marginally successful with any of the current protocols, including slow cooling, rapid cooling and vitrification. We wished to test the hypothesis that oocytes from a single mouse strain would freeze successfully by 1 of the 3 mentioned protocols. Unfertilized Kunming mouse oocytes obtained 14 h after PMSG/hCG administration were randomly assigned to be cryopreserved after slow cooling, ultra rapid cooling and vitrification. Oocytes were thawed by straws being placed into 37 degrees C water, and their morphological appearance and in vitro fertilization capability were compared with that of oocytes that had not undergone cryopreservation. Survival of oocytes was indicated by the absence of darkened ooplasm or by broken membranes or zona pellucida. Functional integrity was evaluated by the formation of a 2-cell embryo after IVF. Survival rate of slow cooled oocytes did not differ from that seen in vitrified oocytes (55.1 vs 65.9%) but was significantly lower in the rapidly cooled oocytes (24.2%; P < 0.01). The results of IVF of slow cooled and vitrified oocytes were similar to those of the control group (72 and 73 vs 77%; P > 0.05). It appears that Kunming mouse oocytes can be successfully cryopreserved using the slow cooling method with 1,2-propanediol and vitrification, which contains both permeating and nonpermeating cryoprotectants.  相似文献   

13.
Tian JH  Wu ZH  Liu L  Cai Y  Zeng SM  Zhu SE  Liu GS  Li Y  Wu CX 《Theriogenology》2006,66(2):439-448
The objective was to determine the effects of various methods of oocyte activation and sperm pretreatment on development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection (ICSI). The second polar body was extruded in the majority (>78.4%) of in vitro-matured (IVM) oocytes 4h after electrical pulse activation. In embryos generated by ICSI and sham-ICSI, a combination of an electrical pulse, with various chemical activators 4 h later, improved (P < 0.05) blastocyst formation rate compared to activation only with a pulse. Treatment with 6-dimethylaminopurine (DMAP) after electrical activation significantly increased the oocyte activation rate. The effects of exposure of sperm to repeated freeze-thaw cycles (without cryoprotectant) on oocyte activation and the effects of sperm pre-incubated with dithiothreitol (DTT) or Triton X-100 on early embryo development were also examined. Blastocyst formation rates after ICSI did not differ between motile sperm and those rendered immotile by one-time freezing and thawing without cryoprotectant. However, sperm rendered immotile by three cycles of freezing/thawing without cryoprotectant had a significantly lower blastocyst formation rate. Although oocytes injected with sperm pre-incubated with Triton X-100 had a higher normal fertilization rate than those pre-incubated with DTT or one-time frozen/thawed sperm, rates of blastocyst formation and cell numbers were similar among the three groups. In conclusion, various methods of oocyte activation and sperm preparation significantly affected the developmental capacity of early porcine embryos derived from IVM and ICSI.  相似文献   

14.
Developmental competence of mammalian oocytes is compromised by currently available oocyte cryopreservation protocols. Experiments were designed to examine the effect of three cryopreservation protocols on the integrity of bovine oocyte DNA. In vitro matured bovine oocytes were cryopreserved either by slow cooling, vitrification in 0.25 ml straws, or in open pulled straws. After thawing/warming, recovered oocytes were immediately subjected to morphological evaluation. Morphologically intact oocytes underwent comet assay to detect cryoinjury at DNA level. All cryopreservation protocols resulted in significant morphological damage as well as DNA damage compared to unfrozen control. Among the morphologically intact oocytes, there was no difference among protocols in the number of oocytes displaying DNA damage. However, oocytes that had been cryopreserved by slow cooling or by vitrification in open pulled straws exhibited more damage than those vitrified in 0.25 ml straws in the extent of DNA damage. If we combine the number of oocytes with morphological damage and oocytes with DNA damage, oocytes cooled by slow cooling resulted in the most damage. This experiment demonstrated that oocyte DNA is a target of cryoinjury and different protocols result in different degrees of damage.  相似文献   

15.
Human oocytes were frozen and thawed by four methods previously used for cryopreser-vation of human embryos. Most of these oocytes were inseminated after thawing to assess their capacity to fertilize and form pronuclear ova. Their morphology was assessed by phase-contrast microscopy used in routine IVF. Twenty-three oocytes were examined by electron microscopy to critically evaluate the effects of cooling and cryopreservation and to confirm fertilization. Morphological survival was observed in more than 60% of the oocytes examined after freeze-thawing. The main features of cryoinjury were cracks in the zona pellucida, disruption of the plasma membrane and extensive disorganization of the ooplasm. Subtle changes in the cytosol of cumulus cells was also observed. Cooling to 0°C or ?6°C had little effect on cytoplasmic structure. Spindles were damaged in two frozen oocytes. Cumulus cell activity, sperm binding to the zona, sperm penetration of the zona seem to be largely unaffected by freeze-thawing. Fertilization was observed in eight oocytes after postthaw insemination and three embryos (8-cell to morula stages) were developed from pronuclear ova on further culture. Both monospermic and polyspermic fertilization were confirmed by electron microscopy and micronuclei were detected in three pronuclear ova. The genetic implications of these nuclear aberrations are discussed. These preliminary studies indicate that oocyte freezing needs to be integrated cautiously with clinical IVF by further assessment of embryos developed from frozen oocytes.  相似文献   

16.
In the present study, we compared the in vitro development of sheep preantral follicles obtained from unfrozen or frozen ovarian cortex. After thawing, follicles stored by a slow-freezing protocol with dimethyl sulfoxide (DMSO) or ethylene glycol (EG) were mechanically isolated and cultured for 10 days. After 1 day, approximately 50% and 34% of the DMSO and EG follicles, respectively, showed overt signs of degeneration, as confirmed by histological analysis. Follicles that survived thawing grew and formed antral-like cavities, without significant differences among experimental groups. However, the percentages of healthy oocyte-cumulus cell complexes (OCCs) retrieved from in vitro-grown follicles, as well as estradiol, were lower in DMSO than in EG or unfrozen follicles. Although cryopreservation did not cause appreciable differences in follicle morphological aspects, frozen OCCs showed lower metabolic cooperativity levels, as determined by [3H]uridine uptake. During culture, oocytes increased in diameter, but the percentage of germinal vesicle stage-arrested oocytes showing a rimmed chromatin configuration was significantly lower in the frozen groups. Our results indicate that cryopreserved sheep preantral follicles underwent growth in vitro but that freezing/thawing specifically affected gap junctional permeability and impaired the progression of regulative processes, such as the acquisition of a specific oocyte chromatin configuration. Moreover, because the cryoprotectant toxicity test excluded the occurrence of direct cellular damage, this method allowed us to discriminate the effects exerted by different cryoprotectants during the cryopreservation procedure on whole-follicular development.  相似文献   

17.
Considerable attention has been focused on the cryopreservation of mammalian oocytes, as a consequence of poor development of cryopreserved bovine oocytes in vitro, in order to enhance the application of genetic engineering. Experiments were carried out to evaluate the viability and ultra-structural changes of bovine oocytes cryopreserved by ultra rapid cooling methods. Oocytes that had been allowed to mature for 22 hr were exposed to a mixture of cryoprotectants (3.2 M ethylene glycol, 2.36 M dimethyl sulfoxide (DMSO), 0.6 M sucrose), and were cryopreserved by very rapid cooling either within glass capillaries or as droplets on copper electron microscope grids. After being warmed, the oocytes were cultured in in vitro maturation (IVM) medium for an additional 2 hr. Viability was assessed by determining the development rate after fertilization with frozen-thawed semen from which motile sperm had been recovered using a Percoll density gradient, and by immunochemical evaluation of microtubule and mitochondrial morphology. Cleavage and development rates were significantly (P < 0.05) lower in oocytes cryopreserved by vitrification than in in vitro fertilization (IVF) control group, but did not differ in the open-pulled glass (OPG) or copper grid (CG) groups. In most oocytes cryopreserved by vitrification, the microtubules were partially or completely broken. Similarly mitochondria appeared to be abnormal compared to that of unfrozen oocytes. Oocytes cultured in IVM medium supplemented with both cytochalasin B (a protein synthesis inhibitor) and 2-mercaptoethanol (an antioxidant) showed less damage to microtubules, but not to mitochondria after cryopreservation. In conclusion, this study showed that bovine oocytes can be cryopreserved by vitrification within small droplets using CGs. While damage to microtubules and mitochondria may be involved in reduced viability, supplementation of IVM medium with cytochalasin B appears to enhance stabilization of microtubules during oocyte cryopreservation.  相似文献   

18.
The cryopreservation of female gametes is still an open problem because of their structural sensitivity to the cooling-and-freezing process and to the exposure to cryoprotectants. The present work was aimed to study the effect of vitrification on immature bovine oocytes freed of cumulus cell investment before freezing. To verify the feasibility and efficiency of denuded oocyte (DO) cryopreservation, the cytoplasmic alterations eventually induced either by cell removal or by the vitrification process were analyzed. In particular, the migration of cortical granules and Ca++ localization were studied. In addition, the localization and distribution of microtubules and microfilaments in immature fresh and vitrified DOs were evaluated. Finally, to establish whether the removal of cumulus cells influenced developmental competence, DOs were thawed after vitrification, matured in vitro and fertilized; then presumptive zygotes were cultured to reach the blastocyst stage. The results indicate that mechanical removal of cumulus cells from immature bovine oocytes does not affect their maturation competence but reduces the blastocyst rate when compared with intact cumulus oocyte complexes (COCs). The findings indicate further that the vitrification process induces changes of cytoplasmic components. However, the composition of the manipulation medium used to remove cumulus cells plays a crucial role in reducing the injuries caused by cryopreservation in both cytoplasmic and nuclear compartments. In fact, the presence of serum exerts a sort of protection, significantly improving both oocyte maturation and blastocyst rates. In conclusion, we demonstrate that denuded immature oocytes can be vitrified after cumulus cells removal and successfully develop up, after thawing, to the blastocyst stage, following in vitro maturation and fertilization.  相似文献   

19.
Boar spermatozoa were prepared for intracytoplasmic sperm injection (ICSI) by two different treatments to facilitate sperm chromatin decondensation and improve fertilisation rates after ICSI in pigs: spermatozoa were either frozen and thawed without cryoprotectants, or treated with progesterone. Morphological changes of the sperm heads after the treatments were examined and then the activation of oocytes and the transformation of the sperm nucleus following ICSI were assessed. After freezing and thawing, the plasma membrane and acrosomal contents over the apical region of sperm head were lost in all the spermatozoa. Following treatment with 1 mg/ml progesterone, the acrosome reaction was induced in 61% of spermatozoa. After injection of three types of spermatozoa, non-treated spermatozoa and progesterone-treated (i.e. acrosome-reacted) spermatozoa induced oocyte activation, but frozen-thawed spermatozoa induced oocyte activation at a significantly lower rate. Sixty-two per cent of sperm heads remained orcein-negative for 6 h, however, resulting in delayed sperm chromatin decondensation and low male pronuclear formation in the oocytes injected with a non-treated spermatazoon. Since the treatments of freezing and thawing and progesterone for spermatozoa accelerated the initial change in sperm chromatin and the latter treatment induced oocyte activation earlier, it is considered that the delay in oocyte activation and decondensation of sperm chromatin after injection of non-treated spermatozoa is caused by the existence of the sperm plasma membrane. These results show that progesterone treatment efficiently induces the acrosome reaction in boar spermatozoa without destroying their potency for oocyte activation, and the induction of the acrosome reaction results in the promotion of male pronuclear formation after ICSI.  相似文献   

20.
Analysis of oocyte physiology to improve cryopreservation procedures   总被引:4,自引:0,他引:4  
In contrast to the preimplantation mammalian embryo, it has been notoriously difficult to cryopreserve the metaphase II oocyte. The ability to store oocytes successfully at -196 degrees C has numerous practical and financial advantages, together with ethical considerations, and will positively impact animal breeding programs and assisted conception in the human. Differences in membrane permeability and in physiology are two main reasons why successful oocyte cryopreservation has remained elusive. It is proposed, therefore, that rather than relying on technologies already established for the preimplantation embryo, the development of cryopreservation techniques suitable for the mammalian oocyte needs to take into account the idiosyncratic physiology of this cell. Analysis of intracellular calcium, for example, has revealed that exposure to conventional permeating cryoprotectants, such as propanediol, ethylene glycol and DMSO, all independently result in an increase in calcium, which in turn has the potential to initiate oocyte activation, culminating in zona hardening. Quantification of the metabolome and proteome of the oocyte has revealed that whereas slow freezing has a dramatic effect on cell physiology, vitrification appears to have limited effect. This is plausibly achieved by the limited exposure to cryoprotectants. Analysis of meiotic spindle dynamics and embryo development following IVF, also indicate that vitrification is less traumatic than slow freezing, and therefore has the greatest potential for successful oocyte cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号