首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interscapular brown adipose tissue (IBAT), a site of nonshivering thermogenesis in mammals, is neurally controlled. The co-existence of sympathetic and peptidergic innervation has been demonstrated in different brown adipose depots. We studied the morphological profile of IBAT innervation and tested by immunohistochemical methods whether cold and warm stimulation are accompanied by modifications in the density of parenchymal noradrenergic nerve fibers. We also studied the immunoreactivity of afferent fibers—which contain calcitonin gene-related peptide (CGRP) and substance P (SP)<197>in different functional conditions. IBAT was obtained from adult rats (6 weeks old) acclimated at different temperatures (4°, 20°, and 28°C). Tissue activity was evaluated by studying the immunolocalization of uncoupling protein (UCP-1), a specific marker of brown adipose tissue. Noradrenergic and peptidergic innervation were seen to arise from morphologically different nerves. Fibers staining for tyrosine hydroxylase (TH) were thin, unmyelinated hilar nerves, and CGRP- and SP-positive fibers were in thick nerves containing both myelinated and unmyelinated fibers. Under cold stimulation, noradrenergic neurons produce greater amounts of TH, and their axons branch, resulting in increased parenchymal nerve fibers density. Neuropeptide Y (NPY) probably co-localizes with TH in noradrenergic neurons, but only in the perivascular nerve fiber network. The parenchymal distribution of NPY to interlobular arterioles and capillaries suggests that this peptide must have other functions besides that of innervating arteriovenous anastomoses, as hypothesized by other researchers. The different distribution of CGRP and SP suggests the existence of different sensory neuronal populations. The detection of CGRP at the parenchymal level is in line with the hypothesis of a trophic action of this peptide.  相似文献   

2.
Neuropathic pain, caused by a lesion or dysfunction of the somatosensory nervous system, is a severe debilitating condition with which clinical treatment remains challenging. Jun activation domain-binding protein (JAB1) is a multifunctional protein that participates in several signaling pathways, controlling cell proliferation and apoptosis. However, the expression and possible function of JAB1 in the pathogenesis of neuropathic pain has not been elucidated. This study aimed to investigate the possible involvement of JAB1. Here, employing a neuropathic pain model induced by chronic constriction injury (CCI) on rats, we reported the role of JAB1 in the maintenance of neuropathic pain. By western blot, we found that CCI markedly up-regulated JAB1 expression in the dorsal root ganglion (DRG) and spinal cord. Immunofluorescent assay demonstrated that JAB1 was extensively localized in IB4-, CGRP- and NF200-positive neurons in the injured L5 DRG, and mainly co-localized with NeuN in spinal cord. In addition, we showed that CCI induced phosphorylation of p65 and JNK in vivo. Intrathecal injection of JAB1 siRNA significantly attenuated the CCI-induced JNK and p65 phosphorylation and alleviated both mechanical allodynia and heat hyperalgesia in rats. Taken together, these results suggested that JAB1 promotes neuropathic pain via positively regulating JNK and NF-κB activation.  相似文献   

3.
The present study demonstrates calcitonin gene-related peptide (CGRP), somatostatin (SOM), bombesin (BOM), and substance P (SP) at the electron microscopic level in lumbar dorsal root axons of normal rats. The highest percentages of labeled axons were for CGRP (14%) and then, in descending order, for SP (8.6%), SOM (6.8%), and BOM (3.1%). The labeled axons were exclusively unmyelinated for SP, SOM, and BOM, and predominantly unmyelinated for CGRP. These data are consistent with the data for labeled sensory cell bodies for these same compounds. We emphasize that these peptides were immunocytochemically visualized in the dorsal roots without experimental manipulation, such as colchicine or dorsal root ligation. Quantitative sampling of this type can be used to assay changes in response to physiological stimuli in numbers of sensory axons that contain identifiable concentrations of these peptides.  相似文献   

4.
5.
6.
The presence and pattern of coexistence of some biologically active substances in nerve fibres supplying the mammary gland in the immature pig were studied using immunohistochemical methods. The substances studied included: protein gene product 9.5 (PGP), tyrosine hydroxylase (TH), somatostatin (SOM), neuropeptide Y (NPY), galanin (GAL), calcitonin gene-related peptide (CGRP) and substance P (SP). The mammary gland was found to be richly supplied by PGP-immunoreactive (PGP-IR) nerve fibres that surrounded blood vessels, bundles of smooth muscle cells and lactiferous ducts. The vast majority of these nerves also displayed immunoreactivity to TH. Immunoreactivity to SOM was observed in a moderate number of nerve fibres which were associated with smooth muscles of the nipple and blood vessels. Immunoreactivity to NPY occurred in many nerve fibres associated with blood vessels and in single nerves supplying smooth muscle cells. Solitary GAL-IR axons supplied mostly blood vessels. Many CGRP-IR nerve fibres were associated with both blood vessels and smooth muscles. SP-IR nerve fibres richly supplied blood vessels only. The colocalization study revealed that SOM, NPY and GAL partly colocalized with TH in nerve fibres supplying the porcine mammary gland.  相似文献   

7.
Nerve fibres displaying neurokinin A (NKA)-immunoreactivity (IR) were seen in trigeminal nerve cell bodies and around cerebral blood vessels. NKA-positive fibres had the same general distribution as those displaying substance P (SP)-IR. Double or sequential immunostaining revealed coexistence of NKA- and SP-IR in a population of small nerve cell bodies in the trigeminal ganglion and in perivascular nerve fibres of brain vessels; both tachykinins were also noted to coexist with calcitonin gene-related peptide (CGRP)-IR. The presence of NKA- and SP-IR in cerebral vessels from guinea pig was verified by high-performance liquid chromatography and radioimmunochemistry. The levels NKA-IR were higher than those of SP-IR in cerebral vessels of rat, guinea pig and rabbit. In cat, pig, cow and human brain vessels, the levels of NKA- and SP-IR were equal. Major cerebral vessels at the base of the brain contained higher levels of NKA- and SP-IR than pial vessels on the cerebral convexities. Only low levels of NKA-IR and SP-IR were measured in choroid plexus and dura mater. Precontracted isolated arterial segments of middle cerebral (cat), basilar (rabbit, guinea pig and rat) and pial arteries (man) relaxed following the in vitro administration of NKA and SP. The responses occurred in the same concentration range; the IC50 value for NKA was, however, about 10 times higher than that for SP, while the maximum relaxation was equal. In basilar arteries from guinea pig, the peptides NKA, SP and CGRP all induced strong and potent relaxations. There was no evidence that one of the peptides might potentiate the relaxant effects in vitro of another. The present data suggest that NKA, SP and CGRP are costored and can be released together and cooperate in the mediation of vascular reactions in response to activation of the trigemino-cerebrovascular pathway.  相似文献   

8.
Phosphatidylinositol-3-kinase (PI3K) has been identified in the expression of central sensitization after noxious inflammatory stimuli. However, its contribution in neuropathic pain remains to be determined. Here we address the role of PI3K signaling in central sensitization in a model of neuropathic pain, and propose a novel potential drug target for neuropathic pain. Chronic constriction injury (CCI) rat model was used in the study as the model for neuropathic pain. Western blotting, whole-cell patch clamp, and von Frey assay were performed to study biochemical, electrical, and behavioral changes in CCI rats, respectively. A steroid metabolite of the fungi (wortmannin) was used to block PI3K signaling and its effects on CCI rats were tested. PI3K/Akt signaling increased in the spinal cord L4–L6 sections in the CCI rats. CCI also facilitated miniature excitatory postsynaptic potential of dorsal horn substantia gelatinosa neurons, increased phosphorylation of glutamate receptor subunit GluA1 and synapsin at the synapse, and induced mechanic allodynia. Wortmannin reversed biochemical, electrical, and behavioral changes in CCI rats. This study is the first to show PI3K/Akt signaling is required for spinal central sensitization in the CCI neuropathic pain model.  相似文献   

9.
Substance P (SP) levels in the spinal cords of very old rats are less than the levels in younger rats (Bergman et al., 1996). After injury to a peripheral nerve in young rats, immunoreactivity (ir) to the SP receptor, NK-1 (neurokinin-1), increases in the spinal cord ipsilateral to the injury and the increases are correlated with the development of thermal hyperalgesia (Goff et al., 1998). Thus we postulated that aged rats might display an increased sensitivity to thermal stimulation before peripheral nerve injury and that they might respond differently to injury than do younger rats. To test this hypothesis, we used the Bennett and Xie model (1988) of chronic constriction injury (CCI) to the sciatic nerve to induce a neuropathic pain condition. We investigated the effect of age on changes in NK-1 ir in superficial layers of the dorsal horn and on numbers of NK ir cells in deeper laminae at the L4-L5 levels of the spinal cord after CCI. NK-1 receptors were tagged immunohistochemically and their distribution quantified by use of computer-assisted image analysis. NK-1 ir changes were related to alterations in thermal and tactile sensitivity that developed after CCI in young, mature and aged (4-6, 14-16, and 24-26 months) Fischer F344 BNF1 hybrid rats. No differences in thermal or tactile sensitivity of young and aged rats were seen in the absence of nerve injury. After injury, aged rats developed thermal hyperalgesia and tactile allodynia more slowly than did the younger rats. NK-1 receptor ir and numbers of NK-1 ir cells in the dorsal horn increased with time post-injury in all three groups. NK-1 ir increases were correlated with the development of thermal hyperalgesia in those rats that displayed hyperalgesia. However, some rats developed an increased threshold to thermal stimuli (analgesia) and that also was correlated with increases in NK-1 ir. Thus NK-1 ir extent, while correlated with thermal sensitivity in the absence of injury, is not a specific marker for disturbances in one particular sensory modality; rather it increases with peripheral nerve injury per se.  相似文献   

10.
Substance P (SP) levels in the spinal cords of very old rats are less than the levels in younger rats (Bergman et al., 1996). After injury to a peripheral nerve in young rats, immunoreactivity (ir) to the SP receptor, NK–1 (neurokinin-1), increases in the spinal cord ipsilateral to the injury and the increases are correlated with the development of thermal hyperalgesia (Goff et al., 1998). Thus we postulated that aged rats might display an increased sensitivity to thermal stimulation before peripheral nerve injury and that they might respond differently to injury than do younger rats. To test this hypothesis, we used the Bennett and Xie model (1988) of chronic constriction injury (CCI) to the sciatic nerve to induce a neuropathic pain condition. We investigated the effect of age on changes in NK-1 ir in superficial layers of the dorsal horn and on numbers of NK ir cells in deeper laminae at the L4-L5 levels of the spinal cord after CCI. NK-1 receptors were tagged immunohistochemically and their distribution quantified by use of computer-assisted image analysis. NK-1 ir changes were related to alterations in thermal and tactile sensitivity that developed after CCI in young, mature and aged (4-6, 14-16, and 24-26 months) Fischer F344 BNF1 hybrid rats. No differences in thermal or tactile sensitivity of young and aged rats were seen in the absence of nerve injury. After injury, aged rats developed thermal hyperalgesia and tactile allodynia more slowly than did the younger rats. NK-1 receptor ir and numbers of NK-1 ir cells in the dorsal horn increased with time post-injury in all three groups. NK-1 ir increases were correlated with the development of thermal hyperalgesia in those rats that displayed hyperalgesia. However, some rats developed an increased threshold to thermal stimuli (analgesia) and that also was correlated with increases in NK-1 ir. Thus NK-1 ir extent, while correlated with thermal sensitivity in the absence of injury, is not a specific marker for disturbances in one particular sensory modality; rather it increases with peripheral nerve injury per se.  相似文献   

11.
PK Chao  KT Lu  YL Lee  JC Chen  HL Wang  YL Yang  MY Cheng  MF Liao  LS Ro 《PloS one》2012,7(8):e43680
Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF) can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN) cells), suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 μg/kg) for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI), during post-operative days 1-25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0-48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6) mRNA and tumor necrosis factor-α (TNF-α) protein in the dorsal root ganglia (DRG). These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48-144 h and 72-144 h after CCI, respectively. Furthermore, G-CSF administered 72-144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM) reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This indicates that G-CSF treatment can suppress early inflammation and prevent the subsequent development of neuropathic pain.  相似文献   

12.
目的探讨川芎嗪对慢性压迫性损伤(CCI)大鼠行为学的影响。方法建立大鼠坐骨神经CCI神经病理痛模型,取40只雄性大鼠随机分成4组,Ⅰ组为空白对照组,Ⅱ组为假手术组,Ⅲ组为CCI+川芎嗪治疗组,Ⅲ组在术后第1天开始腹腔注射100 mg/kg川芎嗪注射液,Ⅳ组为CCI手术组。分别于术前(0 d)及术后1、3、5、7、91、1、14 d以von Frey细丝法和热辐射法测定机械缩足反射阈值(mechanical withdrawal threshold,MWT)和热缩足反射潜伏期(thermal withdrawal latency,TWL),观察CCI大鼠神经病理痛的行为学变化。结果术后14 d,Ⅳ组和I、Ⅱ、Ⅲ组相比较,大鼠后爪的机械和热痛敏阈值明显降低(P〈0.01);I、Ⅱ、Ⅲ组之间相比,大鼠后爪的机械和热痛敏阈值差异没有显著性(P〉0.05)。结论川芎嗪可以缓解CCI大鼠的慢性神经病理痛行为学表现。  相似文献   

13.
A series of tetrahydropyridopyrimidine derivatives were synthesized and evaluated for neurotoxicity and peripheral analgesic activity followed by assessment of antiallodynic and antihyperalgesic potential in two peripheral neuropathic pain models, the chronic constriction injury (CCI) and partial sciatic nerve ligation (PSNL). Compounds (4b and 4d) exhibiting promising efficacies in four behavioral assays of allodynia and hyperalgesia (spontaneous pain, tactile allodynia, cold allodynia and mechanical hyperalgesia) were quantified for their ED50 values (15.12–65.10 mg/kg). Studies carried out to assess the underlying mechanism revealed that the compounds suppressed the inflammatory component of the neuropathic pain and prevented oxidative and nitrosative stress.  相似文献   

14.
The distribution of nerve fibres immunoreactive to calcitonin gene-related peptide (CGRP) was investigated by immunohistochemistry in nipples and mammary glands from lactating and non-lactating rats and compared to the immunoreactivity of other neuropeptides including substance P (SP), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and somatostatin (SOM). The study revealed an extensive innervation of the mammary nipples, in which CGRP-immunoreactive (IR) nerve fibres were abundantly present in the epidermis, dermal connective tissue and intralobular connective tissue of the mammary gland parenchyma. Several of the dermal CGRP-IR fibres seemed to follow blood vessels, or formed ringlet-like structures. The latter were mostly observed in the dermal connective tissue of the nipple from the lactating rat and may have a mechanoreceptive function, e.g. for the suckling stimuli. The location of SP-IR appeared to be comparable to CGRP-IR, but in fewer fibres. Dense NPY-IR networks of nerve fibres were closely associated with the fascicles of smooth musculature in the core of the nipple base. In contrast, VIP-IR fibres were only sparsely present, and SOM-IR was not detected in the mammary nipples. The immunoreactive content of CGRP and SP was determined by radioimmunoassays. The total amount of immunoreactive CGRP was significantly higher in the nipples from the pregnant and the lactating rats when compared to SP. The maximum concentration of CGRP (65.9±4.0 pmol/g) measured in the nipples of the pregnant (day 10) rats exceeded almost ninefold the maximum concentration of SP (7.7±2.0 pmol/g). Thus, the immunoreactive content of CGRP in the nipples confirmed the immunohistochemical observations, and the present results strongly suggest that CGRP is a major neuropeptide in the rat nipple.  相似文献   

15.
目的:探讨外源性的电磁干预方法对神经病理性疼痛大鼠的镇痛效果。方法:将30只成熟的雄性SD大鼠随机等分成3组:空白对照组(Control),坐骨神经慢性压迫损伤(CCI)组以及坐骨神经慢性压迫损伤协同电磁刺激组(CCI+EMF)。CCI组和CCI+EMF组的20只大鼠建立坐骨神经慢性压迫损伤模型,CCI+EMF组大鼠行外源性的全身性电磁刺激干预(脉冲波形,频率15 Hz,强度30 Gs),每天刺激6小时。在CCI模型构建的第0、3、6、9、12及15天对大鼠测试和比较足底机械痛阈值、足底热痛阈值、运动功能评分和神经传导速率。结果:CCI组大鼠的足底机械痛阈值、足底热痛阈值及感觉神经传导速率从CCI手术后的第3天即出现显著性降低,其6、9、12、15天足底机械痛阈值、足底热痛阈值及感觉神经传导速率均显著低于Control组(P0.01),而运动功能评分均显著高于Control组(P0.05)。CCI+EMF组大鼠的足底机械痛阈值、足底热痛阈值及感觉神经传导速率在第9、12、15天显著高于CCI组大鼠(P0.05),而运动功能评分均显著高于CCI l组。结论:外源性的电磁刺激对于神经病理性疼痛大鼠具有良好的镇痛效果,有望成为一种临床治疗神经病理性疼痛的新的物理治疗手段。  相似文献   

16.
MicroRNA (miRNA) are significant regulators of neuropathic pain development and neuroinflammation can contribute a lot to the progression of neuropathic pain. Recently, miR-98 has been reported to be involved in various diseases. However, little is known about the role of miR-98 in neuropathic pain development and neuroinflammation. Therefore, our study was aimed to investigate the function of miR-98 in neuropathic pain via establishing a rat model using chronic constriction injury (CCI) of the sciatic nerve. Here, we observed that miR-98 was downregulated in CCI rat models. Overexpression of miR-9 was able to inhibit neuropathic pain progression. Recently, STAT3 has been reported to serve a key role in various processes, including inflammation. Interestingly, our study indicated that STAT3 was dramatically upregulated and activated in CCI rats. By using informatics analysis, STAT3 was predicted as a direct target of miR-98 and the direct correlation was confirmed. Then, miR-98 was overexpressed in CCI rats and it was found that miR-98 was able to repress neuropathic pain development via inhibiting the neuroinflammation. As displayed, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) expression was obviously induced in CCI rats, while miR-98 reduced their protein levels. Finally, we found that overexpression of STAT3 reversed the inhibitory effect of miR-98 on neuropathic pain development. Taken these together, we reported that overexpression of miR-98 attenuated neuropathic pain development via targeting STAT3 in CCI rat models.  相似文献   

17.
Quantitative receptor autoradiography was used to examine the binding of [125I]-human CGRP in the dorsal horn of the L4 spinal segment of rats with a chronic constriction injury (CCI) of the sciatic nerve or unilateral dorsal rhizotomies of spinal segments L1–L6. At the times selected for study, we found no change in the amount of CGRP binding in any areas examined following CCI. In contrast, our results showed a temporally related increase in the amount of CGRP binding in areas within laminae I–II and in lateral lamina V of the dorsal horn ipsilateral to the rhizotomies. These results indicate that CGRP binding sites are regulated, most likely, by changes in the release of CGRP. Further, our results suggest that the release of CGRP from primary afferent neurons is unchanged in animals with a CCI.  相似文献   

18.
Neuropathic pain has been reported as a type of chronic pain due to the primary dysfunction of the somatosensory nervous system. It is the most serious types of chronic pain, which can lead to a significant public health burden. But, the understanding of the cellular and molecular pathogenesis of neuropathic pain is barely complete. Long noncoding RNAs (lncRNAs) have recently been regarded as modulators of neuronal functions. Growing studies have indicated lncRNAs can exert crucial roles in the development of neuropathic pain. Therefore, our present study focused on the potential role of the lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) in neuropathic pain progression. Firstly, a chronic constrictive injury (CCI) rat model was built. CRNDE was obviously increased in CCI rats. Interestingly, overexpression of CRNDE enhanced neuropathic pain behaviors. Neuroinflammation was induced by CRNDE and as demonstrated, interleukin-10 (IL-10), IL-1, IL-6, and tumor necrosis factor-α (TNF-α) protein levels in CCI rats were activated by LV-CRNDE. For another, miR-136 was obviously reduced in CCI rats. Previously, it is indicated that miR-136 participates in the spinal cord injury via an inflammation in a rat model. Here, firstly, we verified miR-136 could serve as CRNDE target. Loss of miR-136 triggered neuropathic pain remarkably via the neuroinflammation activation. Additionally, IL6R was indicated as a target of miR-136 and miR-136 regulated its expression. Subsequently, we confirmed that CRNDE could induce interleukin 6 receptor (IL6R) expression positively. Overall, it was implied that CRNDE promoted neuropathic pain progression via modulating miR-136/IL6R axis in CCI rat models.  相似文献   

19.
Neuropathic pain caused by somatosensory nervous system dysfunction is a serious public health problem. Some long noncoding RNAs (lncRNAs) can participate in physiological processes involved in neuropathic pain. However, the effects of lncRNA DGCR5 in neuropathic pain have not been explored. Therefore, in our current study, we concentrated on the biological roles of DGCR5 in neuropathic pain. Here, it was observed that DGCR5 was significantly decreased in chronic sciatic nerve injury (CCI) rat models. DGCR5 overexpression was able to alleviate neuropathic pain development including mechanical and thermal hyperalgesia. In addition, the current understanding of miR-330-3p function in neuropathic pain remains largely incomplete. Here, we found that miR-330-3p was greatly increased in CCI rats and DGCR5 can modulate miR-330-3p expression negatively. Upregulation of DGCR5 repressed inflammation-correlated biomarkers including interleukin 6 (IL-6), tumor necrosis factor α, and IL-1β in CCI rats by sponging miR-330-3p. The negative correlation between DGCR5 and miR-330-3p was confirmed in our current study. Inhibition of miR-330-3p suppressed neuropathic pain progression by restraining neuroinflammation in vivo. In addition, PDCD4 was predicted as a downstream target of miR-330-3p. Furthermore, PDCD4 was significantly increased in CCI rats and DGCR5 regulated PDCD4 expression through sponging miR-330-3p in CCI rat models. Taken these together, it was implied that DGCR5/miR-330-3p/PDCD4 axis participated in neuropathic pain treatment.  相似文献   

20.
Baclofen, which is a specific agonist of the metabotropic GABA(B) receptor, is used in clinical practice for the treatment of spasticity of skeletal muscles. It also exerts an analgesic effect, but this effect is still not clear and especially controversial in neuropathic pain. In this work, we studied the antinociceptive effects of baclofen in a model of chronic peripheral neuropathic pain - loose ligation of the sciatic nerve (chronic constriction injury, CCI). As controls we used sham-operated animals. The changes of thermal pain threshold were measured using the plantar test 15-25 days after the operation. The obtained results suggest that baclofen increases pain threshold in both groups. The antinociceptive effect of baclofen was dose-dependent and the maximum response without motor deficits was observed at a dose of 15 mg/kg s.c. In the rats with CCI, significant differences between affected (ipsilateral) and contralateral hind paw were present. This difference was dose-dependent, the highest value (6.2+/-1.37 s) was found at the dose of 20 mg/kg. Based on our results and previous findings it could be summarized that baclofen has antinociceptive action, which is attenuated in the model of chronic neuropathic pain probably due to the degeneration of GABA interneurons after chronic constriction injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号