首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. In an experimental flume, we examined the effects of a biomass reduction and alteration of taxonomic composition, because of grazing by the fish Plecoglossus altivelis, on the net biomass accumulation of periphyton. 2. Grazed and ungrazed assemblages with different biomass and taxonomic composition were first prepared in fish enclosures and exclosures, respectively. These assemblages were then set out in the flume and incubated for 2 days under grazing‐free conditions to examine (i) the relationship between biomass and biomass accumulation rate and (ii) the effect of taxonomic composition on the relationship between these two. 3. The grazed and ungrazed assemblages were dominated by upright filamentous cyanobacteria and diatoms, respectively. The rate of biomass accumulation decreased with increasing periphyton biomass in both the grazed and ungrazed assemblages, and was lower in the grazed than the ungrazed assemblages at any biomass level. 4. The results showed that the reduction in biomass and the alteration of taxonomic composition due to fish grazing have opposite effects on biomass‐specific productivity. Biomass accumulation rate increased in response to biomass reduction, although a shift in dominance from diatoms to upright filamentous cyanobacteria decreased the overall productivity of the periphyton.  相似文献   

3.
Epilithic periphyton and detritus studies in a subalpine stream   总被引:3,自引:3,他引:0  
The accumulation of epilithic periphyton in Ward Creek, a permanent stream within the Lake Tahoe basin, California, was measured weekly at three stations from July through September, 1972. Subsamples were analyzed for total carbon and adenosine triposphate content. The mean total carbon content at three stations over the period of investigation was 0.508 ± 0.263 mg carbon cm–2. Live biomass, as estimated from ATP measurements, averaged 0.121 ± 0.115 mg carbon cm 2. It was estimated that approximately 76% of the organic carbon accumulating on rock substrates was present as detritus. Scanning electron microscopy of rock substrates suggested that much of this detrital accumulation may consist of diatom stalk materials.This work was supported by a grant from the National Science Foundation/RANN GI-22. C. R. Goldman, Principal Investigator.  相似文献   

4.
Grazing by the large caddisfly larva, Dicosmoecus gilvipes (Trichoptera; Limnephilidae), drastically reduced periphyton biomass in laboratory channels at a current velocity of 20 cm s–1. Reduction in biomass as chl a and AFDW ranged from 88 to 93% and 82 to 85%, respectively. On average, grazing rate increased with in-channel SRP (soluble reactive phosphorus) content from 6 to 10 µg 1–1. Grazing rates averaged 25.9–29.3 µg chl a m–2 d–1 and 10.8–12.2 µg chl a mg–1 d–1 based on area and grazer biomass, respectively, with most variability among treatments being due to the grazing effect. Grazing tended to shift the algal community increasingly to filamentous blue-green algae regardless of enrichment. After three weeks, Phormidium comprised over 61% of the community in grazed treatments but only 35% in ungrazed treatments. The stalked diatom Gomphonema comprised only 4% of the grazed community, but 11% in the three ungrazed channels with similar values for Scenedesmus. A model that includes grazing was calibrated to the data and produced a reasonable expectation of periphyton biomass over a range in SRP concentrations. While the model with constant grazer abundance predicts a gradually increasing grazed biomass as SRP increases, grazer production in natural streams may actually increase to accommodate the increased food production.  相似文献   

5.
1. Stream riffles in southern Ontario and western Quèbec were sampled for biomass (58 stations from 51 streams) and production (22 stations from 21 streams) of algae and bacteria in periphyton to test the hypothesis that bacteria in benthic biofilms compete with algae for nutrients. 2. Algal and bacterial biomass were positively correlated, as were algal and bacterial production. Bacterial production was also positively correlated to algal and bacterial biomass, but the relationship was not significant. The ratio of algal to bacterial biomass did not vary with nutrients whereas algal production tended to increase with nutrients more rapidly than bacterial production. 3. Instream nitrogen concentrations explained 38–58% of the variability in algal biomass and production. Bacterial abundance explained an additional 9–29% of the residual variance in algal production and biomass. However, the relationship between bacterial abundance and algal production and biomass, once nutrients were taken into account, was positive, in contrast to the predicted effect of competition. 4. Hence, we reject our original hypothesis that bacteria in biofilms compete with algae for nutrients and instead suggest that bacteria and algae in biofilms coexist in an association that offers space and resources to sustain production of both groups of organisms.  相似文献   

6.
Reach-scale temporal shifts in the distribution of larvae of a grazing caddisfly, Micrasema quadriloba (Brachycentridae), were investigated in a Japanese mountain stream. The larvae showed an aggregated distribution within the reach at the beginning of the immigration, then became randomly dispersed throughout the reach as the immigration progressed. The abundance of periphyton in the reach decreased dramatically with increasing dispersal of the larvae. Simple regression analyses revealed that the stream's flow regime was the most important environmental factor that determined the reach-scale distribution of the larvae and that the relationship between the flow regime and the distribution of the larvae shifted temporally. In addition, our results suggest that only this species of grazing insect, which was dominant in the study reach, controlled the reach-scale abundance of the periphyton.  相似文献   

7.
Relationships between phytoplankton and periphyton communities were investigated in a central Iowa stream. Results generally support the hypothesis that the phytoplankton community arises from the epipelic periphyton community. A high correlation existed between the proportion of benthic diatoms composing the epipelon and phytoplankton. One dominant epipelic species (Nitzschia acicularis) showed a greater tendency to become planktonic than the grouped remainder of Nitzschia spp. There was a significant inverse relationship between the proportion of centric diatoms in the plankton and volume of flow. Centric diatoms were important members of the plankton only when volume of flow was less than 60 ft3 / sec (2.1 m3 / sec). Possible mechanisms explaining these phenomena are discussed.This study represents a portion of a dissertation submitted to the Graduate College, Iowa State University in partial fulfillment of requirements for the degree Doctor of Philosophy.  相似文献   

8.
SUMMARY. 1. In a cuirophic pond in southern England. the snail Lymnaca peregra (Mull.) is associated with submersed macrophyies, mainly Elodea canadensis Michx. In contrast, the snail Planorbis vortex (Linn.) is associated with the emergent macrophyte Glyceria maxima (Hartm.) Holmberg.
2. L. peregra grazed selectively on filamentous green algae found only on E. camtdensis. P. vortex selected diatoms. Detritus, which was 5 times more abundant on G. maxima than on E . canadensis. comprised about 60% of the diet of P. vortex.
3. Results of experiments giving both snail species a choice between periphyton-detritus removed from the two macrophytes were consistent with the field observations. L. peregra c hose pcriphyton-detritus from E. canadensis whereas P. vortex chose that from G. maxima.
4. Although other factors may have influenced the distributions of L. peregru and P mriex in Radley Pond, food choice was probably the most important proximate factor.  相似文献   

9.
Spatio-temporal variation of plant populations often can demonstrate synchronous patterns, particularly within highly connected landscapes. Periphyton biomass (chlorophyll a) and net accumulation were measured at five sites in a spring-fed fourth-order stream located in central Pennsylvania with a mixed land-uses watershed (Spring Creek, USA) to characterize longitudinal variation within the stream. Samples were collected at three-week intervals over one year to describe seasonal patterns of periphyton biomass and net production (n = 17 per site). Spring Creek periphyton biomass and net accumulation increased dramatically from the headwaters to downstream (range 10–1,000 mg/m2). The downstream reaches had exceptionally large algal biomass (chlorophyll a > 300 mg/m2) and potential for rapid turnover. Varying degrees of seasonality were observed among the sites, with upstream sites showing more temporal variation but no distinct seasonal pattern. Despite this, large-scale disturbances within the watershed seem to promote synchrony among sites throughout the stream as reflected by close correlations in chlorophyll values (Pearson correlation coefficient r > 0.50).  相似文献   

10.
To demonstrate the utility of universal plastid primers for probing of environmental samples, we extracted DNA from a tropical stream periphyton community and created two environmental clone libraries. We demonstrate the recovery of DNA sequences corresponding to the major groups of algae observed microscopically in the sample, illustrating the utility of these primers for analysis of environmental samples. Using a touchdown polymerase chain reaction technique, almost 99% of recovered sequences correspond to plastid-containing or cyanobacterial taxa, which allows algae to be targeted to the almost complete exclusion of noncyanobacterial prokaryotes and nonplastid-containing eukaryotes.  相似文献   

11.
12.
Nutrient limitation of primary production was experimentally assessed using an in situ bioassay technique in the Quebrada Salto, a third-order tropical stream draining the northern foothills of the Cordillera Central in Costa Rica. Bioassays employed artificial substrata enriched with nutrients that slowly diffuse through an agar-sand matrix (Pringle & Bowers, 1984). Multiple comparisons of regression coefficients, describing chlorophyll-a accrual through time for different nutrient treatments, revealed positive micronutrient effect(s). Micronutrient treatment combinations (Fe, B, Mn, Zn, Co, Mo, EDTA), supplemented with and without nitrate and phosphate, exhibited significantly greater chlorophyll-a accrual over all other treatments (P < 0.05), supporting over three times that of the control after 14-d of substratum colonization. Neither of the major nutrients (N or P) produced a significant stimulation, although the N treatment displayed 50% more chlorophyll-a than the control after 14-d. Similarly, Si, EDTA, and Si + N + P treatments did not exhibit chlorophyll-a response curves that were significantly different from the control. During the experiment, mean NH4-N and (NO2 + NO3)-N concentrations in the Salto were 2.0 µM (28.6 µg · l–1) and 7.2 µM (100.2 µg · l –1), respectively. High concentrations of PO4-P ( = 2.0 µM; 60.9 µg · l–1) and TP ( = 3.0 µM; 94.0 µg · l–1) were also found, and consequently low molar N:P ratios = 4.7). Despite the potential for N limitation in the system, both N and P appear to be at growth saturating levels. This may be due to micronutrient limitation and/or light limitation of periphyton growth in densely shaded upstream portions of the stream.  相似文献   

13.
Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0–6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of multiple stressors in a warming climate.  相似文献   

14.
A study was made to describe atrazine toxicity and its changes throughout succession of periphyton communities of an undisturbed Mediterranean stream. Toxicity was assessed by short-term physiological tests (concentration-effect curves of photosynthesis to atrazine) in the laboratory using artificial substrates colonized in one stream site during winter, and two stream sites (one open and the other shaded) during summer. In the winter experiment, when environmental conditions were relatively steady and chlorophyll content was low, toxicity increased according to the increases in cell density and chlorophyll content throughout colonization. EC50 (concentration inhibiting photosynthesis by 50%) was above 0.8 μM atrazine until day 16 and below 0.4 μM atrazine after three weeks. In the summer experiment, under more variable environmental conditions, the differences between the EC50 at the beginning and the end of the colonization experiments were not significant (one factor ANOVA) at the two sites. EC50 was on average 0.89 μM atrazine in the shaded site and 0.29 μM atrazine in the open site. A significant negative correlation between irradiance and EC50 was observed all the experiments were considered together (r = 0.464, n = 20, p<0.05), suggesting that light history may have an important role in the response to atrazine. This investigation reveals that the response of stream periphyton to atrazine is likely to be influenced by colonization time and the corresponding changes in algal density and community composition as well as by environmental conditions (e.g. light regime) throughout succession. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
Experimental studies of exploitative competition in a grazing stream insect   总被引:9,自引:0,他引:9  
D. D. Hart 《Oecologia》1987,73(1):41-47
Summary Field and laboratory experiments were conducted to determine whether intraspecific competition for food occurs during the larval stage of the periphyton-grazing caddisfly Glossosoma nigrior (Trichoptera: Glossosomatidae). Larvae were placed in field enclosures at densities less than, equal to, or greater than their natural densities. Most of these individuals began to pupate after 3 weeks, whereupon the mass of each individual was determined. Final mass declined significantly as larval densities increased, whereas neither developmental rate nor mortality/emigration rate was significantly affected by density manipulations. a supplemental experiment comparing the final mass of individuals grown at reduced densities in a laboratory stream with individuals from a natural stream bottom confirmed the results of the more extensive field experiment: reductions in density resulted in significant increases in final mass. Periphyton availability in field enclosures declined according to a negative exponential function as larval densities increased. Over the 25-fold range of larval densities used in these experiments, the final mass of individuals increased linearly with periphyton standing crops. This result suggests that Glossosoma larvae may compete for food even at densities below those employed in this study. Path analysis was used to explore the importance of indirect (i.e., exploitative) and direct (i.e, interference) mechanisms for the observed competitive effects. The analysis indicates that a model based solely on exploitation explains nearly as much of the variance in mass as a model incorporating both interference and exploitation.  相似文献   

16.
Habitat use by four grazing fishes in a rainforest stream was determined by direct observation (snorkeling) and microhabitat measurements for individual fish. Significant species heterogeneity (P?<?0.004) occurred along two principal component gradients of velocity, depth and substrate and most pairwise species contrasts were significant. Abundant Paracrossochilus acerus (Cyprinidae) occupied the slower, deeper end of the gradient and Gastromyzon punctulatus (Balitoridae) the fast, shallow end with common G. cranbrooki and rare G. aeroides intermediate. However, overlap was substantial and as many as three species grazed on a single rock with no apparent interaction. All species were primarily day-active. Incomplete experiments suggest the fishes rapidly abandon rocks with reduced algal cover. Frequent spates with high discharge, turbidity and bedload movement disturbed the river. Disturbance, rather than biotic interactions, may be the dominant factor in the ecology of these fishes.  相似文献   

17.

This study examines the effects of elevated CO2 on the benthic biology of a temperate freshwater stream. We tested the hypotheses that elevated CO2 would increase periphyton biomass, alter elemental composition, and change community composition by increasing the frequency of algal taxa most limited by CO2 availability. Carbon dioxide was bubbled into reservoirs of stream water, increasing the ambient pCO2 by approximately 1100 ppm. The CO2-enriched water then flowed into artificial stream channels. Ceramic tiles were placed into the channels to allow for periphyton colonization. Dissolved inorganic carbon increased and pH decreased with added CO2. Measurements of biological parameters including periphyton biomass, algal C:N:P ratios, and community composition suggest that the periphyton were unaffected by the changes in stream water chemistry. We infer that rising atmospheric CO2 will impact stream water chemistry but that periphyton may not be the first to respond to these changes. Impacts to alkaline freshwater streams from elevated CO2 initially may be due to changes to terrestrial inputs that affect microbial decomposition and grazer activity, rather than through increases in periphyton carbon fixation. However, environmental characteristics of freshwater systems vary considerably, and additional studies are needed for accurate predictive modeling and monitoring of the effects of increasing atmospheric CO2 on freshwater streams.

  相似文献   

18.
基于着生藻类的太子河流域水生态系统健康评价   总被引:14,自引:0,他引:14  
殷旭旺  渠晓东  李庆南  刘颖  张远  孟伟 《生态学报》2012,32(6):1677-1691
本研究以辽宁省太子河流域为研究范例,调查了全流域范围内69个样点的着生藻类群落和水环境理化特征,并在此基础上应用硅藻生物评价指数(DBI)和生物完整性评价指数(P-IBI),同时结合栖息地环境质量评价指数(QHEI),对太子河流域水生态系统进行健康评价。结果表明,太子河流域着生藻类群落结构具有明显的空间异质性,CCA结果显示驱动着生藻类群落结构形成的水环境因子为电导率、总溶解固体和总氮。虽然DBI、P-IBI和QHEI在太子河流域某些河段上的评价结果有较大出入,但从全流域尺度上看,DBI、P-IBI和QHEI的评价结果基本一致,表现为太子河上游健康状况较好,中游健康状况一般,而下游健康状况较差。文中讨论了水环境理化因子与着生藻类群落结构的相互关系,并对比分析了DBI、P-IBI和QHEI这三种河流健康评价方法。  相似文献   

19.
We studied how differences in periphyton colonization interval and snail density affected grazing rates in Physella virgata, and whether snails controlled periphyton biomass. Both egestion rates and incorporation rates of 14C labeled periphyton were estimated in laboratory experiments. Periphyton biomass increased with field colonization interval in all experiments, but did not consistently influence estimates of grazing rate. However, increased periphyton abundance in one of the experiments could still explain higher grazer rates in that year, although larger snail body size is a confounding explanation. Increased snail density also resulted in decreased grazing rates, as observed in earlier studies with this snail species, as well as in studies with other snail grazers. Our results suggest grazing rates and resulting impacts may change seasonally with variation in either periphyton biomass, grazer life-history stage or population density.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号