首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts ATP, dATP, GTP, CTP, and UTP as diphosphoryl donors. All of these properties are characteristic for class II PRPP synthases. K(m) values for ATP and ribose 5-phosphate are 77 and 48 microM, respectively. Gel filtration reveals a molecular mass of the native enzyme of approximately 110 kD, which is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two enzymes are essentially conserved. Amino acid sequence comparison reveals that residues of class I PRPP synthases interacting with allosteric inhibitors are not conserved in class II PRPP synthases. Similarly, residues important for oligomerization of the B. subtilis enzyme show little conservation in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4.  相似文献   

2.
The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and the crystal structure determined. The enzyme is activated by phosphate ions and only ATP or dATP serve as diphosphoryl donors. The K(m) values are determined as 2.6 mM and 2.8 mM for ATP and ribose 5-phosphate, respectively, and the V(max) value as 2.20 mmol (minxmg of protein)(-1). ADP is a potent inhibitor of activity while GDP has no effect. A single ADP binding site, the active site, is present per subunit. The crystal structure of the enzyme reveals a more compact subunit than that of the enzyme from the mesophile Bacillus subtilis, caused by truncations at the N and C terminus as well as shorter loops in the M.jannaschii enzyme. The M.jannaschii enzyme displays a tetrameric quaternary structure in contrast to the hexameric quaternary structure of B.subtilis PRPP synthase. Soaking of the crystals with 5'-AMP and PRPP revealed the position of the former compound as well as that of ribose 5-phosphate. The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases.  相似文献   

3.
The 5-phospho-α-D-ribose 1-diphosphate (PRPP) metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P) and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS). Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of P(i). ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of P(i) would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure determination of MtPRS to provide a solid foundation for the rational design of specific inhibitors of this enzyme.  相似文献   

4.
Purine phosphoribosyltransferases catalyze the Mg2+ -dependent reaction that transforms a purine base into its corresponding nucleotide. They are present in a wide variety of organisms including plants, mammals, and parasitic protozoa. Giardia lamblia, the causative agent of giardiasis, lacks de novo purine biosynthesis and relies primarily on adenine and guanine phosphoribosyltransferases (APRTase and GPRTase) constituting two independent and essential purine salvage pathways. The APRTase from G. lamblia was cloned and expressed with a 6-His tag at its C terminus and purified to apparent homogeneity. Adenine and alpha-d-5-phosphoribosyl-1-pyrophosphate (PRPP) have K(m) values of 4.2 and 143 microm with a k(cat) of 2.8 s(-1) in the forward reaction, whereas AMP and PP(i) have K(m) values of 87 and 450 microm with a k(cat) of 9.5 x 10(-3) s(-1) in the reverse reaction. Product inhibition studies indicated that the forward reaction follows a random Bi Bi mechanism. Results from the kinetics of equilibrium isotope exchange further verified a random Bi Bi mechanism in the forward reaction. In a mutant enzyme, F25W, with kinetic constants similar to those of the wild type and a tryptophan residue at the adenine binding site, the addition of adenine or AMP to the free mutant enzyme resulted in fluorescence quenching, whereas PRPP caused fluorescence enhancement. The dissociation constants thus estimated are 16.5 microm for adenine, 14.3 microm for AMP, and 83.0 microm for PRPP. PP(i) exerted no detectable effect on the tryptophan fluorescence at all, suggesting a lack of PP(i) binding to the free enzyme. An ordered substrate binding in the reverse reaction with AMP bound first followed by PP(i) is thus postulated.  相似文献   

5.
The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained no detectable PRPP synthase activity. In contrast PRPP could be detected in growing cells containing PRS1 PRS2, PRS1 PRS3, PRS5 PRS2, or PRS5 PRS4. These apparent conflicting results indicate that, apart from the PRS1 PRS3-specified enzyme, PRS-specified enzyme is functional in vivo but unstable when released from the cell. Certain combinations of three PRS genes appeared to produce an enzyme that is stable in vitro. Thus, extracts of strains harboring PRS1 PRS2 PRS5, PRS1 PRS4 PRS5, or PRS2 PRS4 PRS5 as well as extracts of strains harboring combinations with PRS1 PRS3 contained readily assayable PRPP synthase activity. The data indicate that although certain pairwise combinations of subunits produce an active enzyme, yeast PRPP synthase requires at least three different subunits to be stable in vitro. The activity of PRPP synthases containing subunits 1 and 3 or subunits 1, 2, and 5 was found to be dependent on Pi, to be temperature-sensitive, and inhibited by ADP.  相似文献   

6.
The first committed step in methanopterin biosynthesis is catalyzed by 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (RFA-P) synthase. Unlike all known phosphoribosyltransferases, beta-RFA-P synthase catalyzes the unique formation of a C-riboside instead of an N-riboside in the condensation of p-aminobenzoic acid (pABA) and 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) to produce 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (beta-RFA-P), CO(2), and inorganic pyrophosphate (PP(i)). Here we report the successful cloning, active overexpression in Escherichia coli, and purification of this homodimeric enzyme containing two 36.2-kDa subunits from the methanogen Methanococcus jannaschii. Steady-state initial velocity and product inhibition kinetic studies indicate an ordered Bi-Ter mechanism involving binding of PRPP, then pABA, followed by release of the products CO(2), then beta-RFA-P, and finally PP. The Michaelis parameters are as follows: K(m)pABA, 0.15 mm; K(m)PRPP, 1.50 mm; V(max), 375 nmol/min/mg; k(cat), 0.23 s(-1). CO(2) showed uncompetitive inhibition, K(i) = 0.990 mm, under varied PRPP and saturated pABA, and a mixed type of inhibition, K(1) = 1.40 mm and K = 3.800 mm, under varied pABA and saturated PRPP. RFA-P showed uncompetitive inhibition, K(i) = 0.210 mm, under varied PRPP and saturated pABA, and again uncompetitive, K(i) = 0.300 mm, under saturated PRPP and varied pABA. PP(i) exhibits competitive inhibition, K(i) = 0.320 mm, under varied PRPP and saturated pABA, and a mixed type of inhibition, K(1) = 0.60 mm and K(2) = 1.900 mm, under saturated PRPP and varied pABA. Synthase lacks any chromogenic cofactor, and the presence of pyridoxal phosphate and the mechanistically related pyruvoyl cofactors has been strictly excluded.  相似文献   

7.
Nicotinamide (Nam) phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in mammalian NAD synthesis, catalyzing nicotinamide mononucleotide (NMN) formation from Nam and 5-phosphoribosyl 1-pyrophosphate (PRPP). NAMPT has also been described as an adipocytokine visfatin with a variety of actions, although physiological significance of this protein remains unclear. It has been proposed that possible actions of visfatin are mediated through the extracellular formation of NMN. However, we did not detect NMN in mouse blood plasma, even with a highly specific and sensitive liquid chromatography/tandem mass spectrometry. Furthermore, there is no or little ATP, the activator of NAMPT, in extracellular spaces. We thus questioned whether visfatin catalyzes the in situ formation of NMN under such extracellular milieus. To address this question, we here determined K(m) values for the substrates Nam and PRPP in the NAMPT reaction without or with ATP using a recombinant human enzyme and found that 1 mM ATP dramatically decreases K(m) values for the substrates, in particular PRPP to its intracellular concentration. Consistent with the kinetic data, only when ATP is present at millimolar levels, NAMPT efficiently catalyzed the NMN formation at the intracellular concentrations of the substrates. Much lower concentrations of Nam and almost the absence of PRPP and ATP in the blood plasma suggest that NAMPT should not efficiently catalyze its reaction under the extracellular milieu. Indeed, NAMPT did not form NMN in the blood plasma. From these kinetic analyses of the enzyme and quantitative determination of its substrates, activator, and product, we conclude that visfatin does not participate in NMN formation under the extracellular milieus. Together with the absence of NMN in the blood plasma, our conclusion does not support the concept of "NAMPT-mediated systemic NAD biosynthesis." Our study would advance current understanding of visfatin physiology.  相似文献   

8.
ATP合酶的结构与催化机理   总被引:18,自引:0,他引:18  
ATP合酶 (F1Fo 复合物) 是生物体内进行氧化磷酸化和光合磷酸化的关键酶.随着核磁共振、X射线晶体衍射、遗传学、化学交联等技术在ATP合酶研究中的广泛应用,ATP合酶的整体结构及其各组成亚基结构的研究都有很大的进展.其中细菌ATP合酶结构的研究更为深入.目前对质子通过Fo的转运方式提出两种模型:单通道和双半通道模型.对扭力矩的形成以及旋转催化也有了进一步的认识.Boyer提出的结合改变机理推动了ATP合酶催化机制的研究,现在主要有两点催化机制和三点催化机制.ATP合酶的催化反应受酶的构象变化和外在条件的调节.  相似文献   

9.
An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene encoding PRPP synthase (B. Hove-Jensen, J. Bacteriol. 178:714-722, 1996). The new pathway requires three enzymes: phosphopentomutase, ribose 1-phosphokinase, and ribose 1,5-bisphosphokinase. The latter activity is encoded by phnN; the product of this gene is required for phosphonate degradation, but its enzymatic activity has not been determined previously. The reaction sequence is ribose 5-phosphate --> ribose 1-phosphate --> ribose 1,5-bisphosphate --> PRPP. Alternatively, the synthesis of ribose 1-phosphate in the first step, catalyzed by phosphopentomutase, can proceed via phosphorolysis of a nucleoside, as follows: guanosine + P(i) --> guanine + ribose 1-phosphate. The ribose 1,5-bisphosphokinase-catalyzed phosphorylation of ribose 1,5-bisphosphate is a novel reaction and represents the first assignment of a specific chemical reaction to a polypeptide required for cleavage of a carbon-phosphorus (C-P) bond by a C-P lyase. The phnN gene was manipulated in vitro to encode a variant of ribose 1,5-bisphosphokinase with a tail consisting of six histidine residues at the carboxy-terminal end. PhnN was purified almost to homogeneity and characterized. The enzyme accepted ATP but not GTP as a phosphoryl donor, and it used ribose 1,5-bisphosphate but not ribose, ribose 1-phosphate, or ribose 5-phosphate as a phosphoryl acceptor. The identity of the reaction product as PRPP was confirmed by coupling the ribose 1,5-bisphosphokinase activity to the activity of xanthine phosphoribosyltransferase in the presence of xanthine, which resulted in the formation of 5'-XMP, and by cochromatography of the reaction product with authentic PRPP.  相似文献   

10.
Burgos ES  Schramm VL 《Biochemistry》2008,47(42):11086-11096
Human nicotinamide phosphoribosyltransferase (NAMPT, EC 2.4.2.12) catalyzes the reversible synthesis of nicotinamide mononucleotide (NMN) and inorganic pyrophosphate (PP i) from nicotinamide (NAM) and alpha- d-5-phosphoribosyl-1-pyrophosphate (PRPP). NAMPT, by capturing the energy provided by its facultative ATPase activity, allows the production of NMN at product:substrate ratios thermodynamically forbidden in the absence of ATP. With ATP hydrolysis coupled to NMN synthesis, the catalytic efficiency of the system is improved 1100-fold, substrate affinity dramatically increases ( K m (NAM) from 855 to 5 nM), and the K eq shifts -2.1 kcal/mol toward NMN formation. ADP-ATP isotopic exchange experiments support the formation of a high-energy phosphorylated intermediate (phospho-H247) as the mechanism for altered catalytic efficiency during ATP hydrolysis. NAMPT captures only a small portion of the energy generated by ATP hydrolysis to shift the dynamic chemical equilibrium. Although the weak energetic coupling of ATP hydrolysis appears to be a nonoptimized enzymatic function, closer analysis of this remarkable protein reveals an enzyme designed to capture NAM with high efficiency at the expense of ATP hydrolysis. NMN is a rate-limiting precursor for recycling to the essential regulatory cofactor, nicotinamide adenine dinucleotide (NAD (+)). NMN synthesis by NAMPT is powerfully inhibited by both NAD (+) ( K i = 0.14 muM) and NADH ( K i = 0.22 muM), an apparent regulatory feedback mechanism.  相似文献   

11.
One-carbon metabolism mediated by folate coenzymes plays an essential role in several major cellular processes. In the prokaryotes studied, three folate-dependent enzymes, 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) generally exist as monofunctional or bifunctional proteins, whereas in eukaryotes the three activities are present on one polypeptide. The structural organization of these enzymes in plants had not previously been examined. We have purified the 10-formyltetrahydrofolate synthetase activity from spinach leaves to homogeneity and raised antibodies to it. The protein was a dimer with a subunit molecular weight of Mr = 67,000. The Km values for the three substrates, (6R)-tetrahydrofolate, ATP, and formate were 0.94, 0.043, and 21.9 mM, respectively. The enzyme required both monovalent and divalent cations for maximum activity. The 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase activities of spinach coeluted separately from the 10-formyltetrahydrofolate synthetase activity on a Matrex Green-A column. On the same column, the activities of the yeast trifunctional C1-tetrahydrofolate synthase coeluted. In addition, antibodies raised to the purified spinach protein immunoinactivated and immunoprecipitated only the 10-formyltetrahydrofolate synthetase activity in a crude extract of spinach leaves. These results suggest that unlike the trifunctional form of C1-tetrahydrofolate synthase in the other eukaryotes examined, 10-formyltetrahydrofolate synthetase in spinach leaves is monofunctional and 5,10-methyl-enetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase appear to be bifunctional. Although structurally dissimilar to the other eukaryotic trifunctional enzymes, the 35 amino-terminal residues of spinach 10-formyltetrahydrofolate synthetase showed 35% identity with six other tetrahydrofolate synthetases.  相似文献   

12.
Cao H  Pietrak BL  Grubmeyer C 《Biochemistry》2002,41(10):3520-3528
Quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) catalyzes the formation of nicotinate mononucleotide, carbon dioxide, and pyrophosphate from 5-phosphoribosyl 1-pyrophosphate (PRPP) and quinolinic acid (QA, pyridine 2,3-dicarboxylic acid). The enzyme is the only type II PRTase whose X-ray structure is known. Here we determined the kinetic mechanism of the enzyme from Salmonella typhimurium. Equilibrium binding studies show that PRPP and QA each form binary complexes with the enzyme, with K(D) values (53 and 21 microM, respectively) similar to their K(M) values (30 and 25 microM, respectively). Although neither PP(i) nor NAMN products bound well to the enzyme, 130-fold tighter binding of PP(i) (K(D) = 75 microM) and NAMN (K(D) = 6 microM) in a ternary complex was observed. Phthalic acid (K(D) = 21 microM) and PRPP each caused a 2.5-fold tightening of the other's binding. Isotope trapping experiments indicated that the E.QA complex is catalytically competent, whereas the E.PRPP complex could not be trapped. Pre-steady-state kinetics gave a linear rate of NAMN formation, indicating that on-enzyme phosphoribosyl transfer chemistry is rate-determining. Isotope trapping from the steady state revealed that nearly all QA and about one-third of PRPP in ternary enzyme.QA.PRPP complexes could be trapped as the product. Substrate inhibition by PRPP was observed. These data demonstrate a predominantly ordered kinetic mechanism in which productive binding of quinolinic acid precedes that of PRPP. An E.PRPP complex exists as a nonproductive side branch.  相似文献   

13.
The standardized enzyme coupling method for assaying sucrose synthase activities in the direction of sucrose cleavage was reexamined using enzyme preparations from cultured cells of sycamore (Acer pseudoplatanus L.) and spinach leaves (Spinacea oleracea). Both ATP and Tris, commonly utilized in assay systems to measure sucrose synthase, were found to inhibit non-competitively the ADPG-synthesizing activities of the enzyme. Upon substituting ATP by either GTP or UTP, and Tris by HEPES, we found that the sucrose synthase is capable of producing ADPG effectively, recognizing ADP as the principal substrate (Km = 5.3 microM (sycamore) and 16.8 microM (spinach]. The Vmax value for the synthesis of ADPG clearly surpasses the Vmax observed for the synthesis of UDPG by the enzyme. It was found that UDP is not inhibitory on the synthesis of ADPG by SS, which behaves allosterically with respect to the concentration level of sucrose.  相似文献   

14.
The mitochondrial ATP synthase from yeast S. cerevisiae has been genetically modified, purified in a functional form, and characterized with regard to lipid requirement, compatibility with a variety of detergents, and the steric limit with rotation of the central stalk has been assessed. The ATP synthase has been modified on the N-terminus of the β-subunit to include a His(6) tag for Ni-chelate affinity purification. The enzyme is purified by a two-step procedure from submitochondrial particles and the resulting enzyme demonstrates lipid dependent oligomycin sensitive ATPase activity of 50 units/mg. The yeast ATP synthase shows a strong lipid selectivity, with cardiolipin (CL) being the most effective activating lipid and there are 30 moles CL bound per mole enzyme at saturation. Green Fluorescent Protein (GFP) has also been fused to the C-terminus of the ε-subunit to create a steric block for rotation of the central stalk. The ε-GFP fusion peptide is imported into the mitochondrion, assembled with the ATP synthase, and inhibits ATP synthetic and hydrolytic activity of the enzyme. F(1)F(o) ATP synthase with ε-GFP was purified to homogeneity and serves as an excellent enzyme for two- and three-dimensional crystallization studies.  相似文献   

15.
The activation of lymphocytes has been used to study the regulation of mammalian gene expression. Concanavalin A (Con A) added to mouse spleen lymphocytes in serum-free medium leads to an increase in the rate of DNA synthesis as great as 1000 fold, commencing 20 hr after its addition. Prior to 20 hr, the rate of purine synthesis increases 10–100 fold as measured by accumulation of the purine intermediate, formyl glycineamide ribonucleotide (FGAR). Addition of dibutyryl cyclic GMP to the lymphocyte suspensions results in a 10 fold increase in the rate of DNA synthesis in the absence of Con A and enhances both purine synthesis and DNA synthesis in its presence. The activity of phosphoribosyl pyrophosphate synthetase (PRPP synthetase), an enzyme central to purine and pyrimidine biosynthesis, is increased 2–10 fold during the activation. The increase begins to appear 8 hr after Con A addition and requires concomitant protein synthesis. The induced PRPP synthetase activity is stimulated by the presence of cyclic GMP in the enzyme assay. Addition of dibutyryl cyclic AMP to Con A-stimulated lymphocytes inhibits FGAR production, the stimulation of DNA synthesis, and the appearance of cyclic GMP-sensitive PRPP synthetase. These studies suggest that cyclic nucleotides play a significant role in the molecular mechanism of lymphocyte activation, the regulation of purine biosynthesis, and of eucaryotic genetic expression.  相似文献   

16.
Following incubation with ATP and a cAMP-dependent protein kinase under optimal conditions of lipid acceptor, phospholipid and metal ion requirements, the transfer activity of partially purified dolichol phosphate mannose synthase (DPMS) increased about 60% and this activation correlated with a 50% increase in V(max) with no alteration in the apparent K(m) for GDP-Manose. Phosphorylation with [gamma-(32)P]ATP resulted in the labeling of several polypeptides, one of which exhibited the molecular weight of the enzyme (30 kDa) and was also recognized using a specific anti-DPMS monoclonal antibody. This and the fact that the phosphate label could be removed by an alkaline phosphatase indicate that Candida DPMS may be regulated by phosphorylation-dephosphorylation, a mechanism that has been proposed for the enzyme in other organisms.  相似文献   

17.
The hydrolysis of beta-(2-furyl)acryloyl phosphate (FAP), a synthetic substrate for the (Na+ + K+)-ATPase by the partially purified enzyme from rat brain and rat kidney, has been assessed. Using previously determined FAPase reaction conditions, it was discovered that the KI for ouabain of the alpha 2/3 isozyme of the (Na+ + K+)-ATPase was approximately 10(-5) M, while for the alpha 1 isozyme the KI was approximately 10(-3) M. These values were an order of magnitude higher (lower affinity) than the KI's for ouabain as determined when using ATP in a coupled assay for (Na+ + K+)-ATPase activity: approximately 10(-6) M and approximately 10(-4) M for the alpha 2/3 and alpha 1 isozymes, respectively. This discrepancy was alleviated by altering established reaction conditions. Previously published FAPase studies have overlooked this fact, since either the properties of the isozymes of the (Na+ + K+)-ATPase were unknown at that time, or ouabain titration profiles were never performed.  相似文献   

18.
Two of the distinct diversities of the engines A(1)A(O) ATP synthase and F(1)F(O) ATP synthase are the existence of two peripheral stalks and the 24kDa stalk subunit E inside the A(1)A(O) ATP synthase. Crystallographic structures of subunit E have been determined recently, but the epitope(s) and the strength to which this subunit does bind in the enzyme complex are still a puzzle. Using the recombinant A(3)B(3)D complex and the major subunits A and B of the methanogenic A(1)A(O) ATP synthase in combination with fluorescence correlation spectroscopy (FCS) we demonstrate, that the stalk subunit E does bind to the catalytic headpiece formed by the A(3)B(3) hexamer with an affinity (K(d)) of 6.1±0.2μM. FCS experiments with single A and B, respectively, demonstrated unequivocally that subunit E binds stronger to subunit B (K(d)=18.9±3.7μM) than to the catalytic A subunit (K(d)=53.1±4.4). Based on the crystallographic structures of the three subunits A, B and E available, the arrangement of the peripheral stalk subunit E in the A-B interface has been modeled, shining light into the A-B-E assembly of this enzyme.  相似文献   

19.
Thiol modulation of the chloroplast ATP synthase γ subunit has been recognized as an important regulatory system for the activation of ATP hydrolysis activity, although the physiological significance of this regulation system remains poorly characterized. Since the membrane potential required by this enzyme to initiate ATP synthesis for the reduced enzyme is lower than that needed for the oxidized form, reduction of this enzyme was interpreted as effective regulation for efficient photophosphorylation. However, no concrete evidence has been obtained to date relating to the timing and mode of chloroplast ATP synthase reduction and oxidation in green plants. In this study, thorough analysis of the redox state of regulatory cysteines of the chloroplast ATP synthase γ subunit in intact chloroplasts and leaves shows that thiol modulation of this enzyme is pivotal in prohibiting futile ATP hydrolysis activity in the dark. However, the physiological importance of efficient ATP synthesis driven by the reduced enzyme in the light could not be demonstrated. In addition, we investigated the significance of the electrochemical proton gradient in reducing the γ subunit by the reduced form of thioredoxin in chloroplasts, providing strong insights into the molecular mechanisms underlying the formation and reduction of the disulfide bond on the γ subunit in vivo.  相似文献   

20.
The prsA1 allele, specifying a mutant Escherichia coli phosphoribosylpyrophosphate (PRPP) synthetase, has been cloned. The mutation was shown by nucleotide sequence analysis to result from substitution of Asp-128 (GAT) in the wild type by Ala (GCT) in prsA1. This alteration was confirmed by chemical determination of the amino acid sequence of a tryptic peptide derived from the purified mutant enzyme. The mutation lies at the N-terminal end of a 16 residue sequence that is highly conserved in E. coli, Bacillus subtilis, and rat PRPP synthetases and has the following consensus sequence: DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6-fold lower affinity for Ca2+, as judged by the ability of Ca2+ to inhibit the reaction in the presence of 10 mM Mg2+. Wild type PRPP synthetase is subject to product inhibition by AMP, but AMP inhibition of the prsA1 mutant enzyme could not be detected. It has been previously proposed that a divalent cation binds to PRPP synthetase and serves as a bridge to the alpha-phosphate of ATP and AMP at the active site. The prsA1 mutation appears to alter this divalent cation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号