共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
D J Peters M Cammans S Smit W Spek M M van Lookeren Campagne P Schaap 《Developmental genetics》1991,12(1-2):25-34
A compilation of literature data and recent experiments led to the following conclusions regarding cyclic adenosine 3':5' monophosphate (cAMP) regulation of gene expression. Several classes of cAMP-induced gene expression can be discriminated by sensitivity to stimulation kinetics. The aggregation-related genes respond only to nanomolar cAMP pulses. The prestalk-related genes respond both to nanomolar pulses and persistent micromolar stimulation. The prespore specific genes respond only to persistent micromolar stimulation. The induction of the aggregation- and prestalk-related genes by nanomolar cAMP pulses may share a common transduction pathway, which does not involve cAMP, while involvement of the inositol 1,4,5-trisphosphate (IP3)/Ca2+ pathway is unlikely. Induction of the expression of prespore and prestalk-related genes by micromolar cAMP stimuli utilizes divergent signal processing mechanisms. cAMP-induced prespore gene expression does not involve cAMP and probably also not cyclic guanosine 3'.5' monophosphate (cGMP) as intracellular intermediate. Involvement of cAMP-induced phospholipase C (PLC) activation in this pathway is suggested by the observation that IP3 and 1,2-diacylglycerol (DAG) can induce prespore gene expression, albeit in a somewhat indirect manner and by the observation that Li+ and Ca2+ antagonists inhibit prespore gene expression. Cyclic AMP induction of prestalk-related gene expression is inhibited by IP3 and DAG and promoted by Li+, and is relatively insensitive to Ca2+ antagonists, which indicates that PLC activation does not mediate prestalk-related gene expression. Neither prespore nor prestalk-related gene expression utilizes the sustained cAMP-induced pHi increase as intracellular intermediate. 相似文献
3.
Mammalian cell invasion by Trypanosoma cruzi requires the activation of signal transduction pathways that result in a Ca(2+) response both in the parasite and the host cell. By using drugs that interfere with the signalling processes, we investigated if the difference in the ability of T. cruzi isolates to invade host cells was associated with the activation of distinct signalling routes in the parasites. Experiments were performed with metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, using the highly invasive isolate CL and the poorly infective isolate G, which belong to distinct phylogenetic lineages. Treatment of parasites with adenylyl cyclase activator forskolin increased the infectivity of the G but not of the CL isolate towards HeLa cells. On the other hand, a specific protein tyrosine kinase inhibitor genistein reduced by approximately 75% the penetration of CL but not of G isolate into HeLa cells. In the CL but not in the G isolate, protein tyrosine kinase mediated the phosphorylation of a 175kDa protein in a manner inducible by a HeLa cell extract. Upon treatment with the phospholipase C inhibitor U73122, or with drugs such as caffeine, which affects Ca(2+) release from inositol-1,4,5-triphosphate-sensitive stores, or thapsigargin, an inhibitor of intracellular Ca(2+) transport ATPases, the infectivity of the CL but not of the G isolate diminished significantly (P<0.005). In both isolates, a combination of ionomycin plus NH(4)Cl or nigericin released Ca(2+) from acidic vacuoles containing a Ca(2+)/H(+) exchange system. This treatment reduced the infectivity of metacyclic forms of the G but not of the CL isolate. Taken together, these data suggest that, for host cell invasion, distinct signalling pathways are activated in metacyclic trypomastigotes of the two isolates, leading to Ca(2+) release from different intracellular compartments. 相似文献
4.
Nitric oxide-modulated marker gene expression of signal transduction pathways in lung endothelial cells 总被引:1,自引:0,他引:1
Nitric oxide (NO) is a signal molecule involved in regulation of physiological and pathophysiological functions of the vascular endothelium such as apoptosis. We examined whether NO-modulates marker gene expression of signal transduction pathways in cultured pulmonary artery endothelial cell (PAEC). Cells were exposed to a NO donor, 1 mM NOC-18, for 0.5, 5, and 24 h, thereafter, expression levels of 96 marker genes associated with 18 signal transduction pathways were assessed using a signal transduction pathway-finder microarray analysis system. NO modulation of apoptotic pathways and nuclear factor (NF) microarray were further analyzed. Gene array analyses revealed that 17 genes in 13 signal pathways were up- or down-regulated in cells exposed to NO, four of which were significantly altered by NO and are associated with apoptotic pathways. Apoptotic pathways resulted in identification of 11 genes in this group. Nuclear factor microarray studies demonstrated that NO-modulated expression of these signal transduction genes was associated with regulation of NF-binding activities. Gel shift analysis verified the effects of NO on DNA-binding activity of NF. These results demonstrated that NO signaling modulates at least 13 signal transduction pathways including apoptosis-related families in PAEC. 相似文献
5.
Cellular responses to the vasoconstrictor peptide, endothelin, have been investigated in quiescent cultured human vascular smooth muscle cells (hVSMC). Endothelin caused intracellular alkalinization and activation of the protein synthetic enzyme S6-kinase, but such responses were not associated with any mitogenic effects of endothelin on hVSMC. In myo-[3H]inositol-prelabelled hVSMC endothelin elicited a rapid increase in inositol bis- and tris-phosphates and concomitant hydrolysis of polyphosphoinositol lipids. In [3H]arachidonate-prelabelled hVSMC endothelin promoted production of diacylglycerol, the early kinetics of which parallelled polyphosphoinositol lipid hydrolysis. Such phospholipase C activation by endothelin was sustained in hVSMC with accumulation of inositol polyphosphates being markedly protracted and the decay of diacylglycerol slow. Endothelin promoted extracellular release of [3H]arachidonate-labelled material from hVSMC which derived via deacylation of both phosphatidylinositol and phosphatidylcholine. This process was inhibited by phospholipase A2 and lipoxygenase inhibitors, but insensitive to phospholipase C and cyclooxygenase inhibitors. Endothelin-induced activation of phospholipase C and phospholipase A2 signal transduction pathways (EC50 approximately 5-8 nM for both) in hVSMC apparently proceed in an independent parallel manner rather than a sequential one. 相似文献
6.
Activation of B cells by autoreactive T cells: cloned autoreactive T cells activate B cells by two distinct pathways 总被引:7,自引:0,他引:7
Although the existence of autoreactive T cells has been widely reported, the functional capacities of these populations have been less well defined. Studies were therefore carried out to characterize the relationship of autoreactive T cells to antigen-specific major histocompatibility complex (MHC)-restricted T cells in their ability to act as helper cells for the induction of immunoglobulin synthesis by B cells. A number of autoreactive T cell lines and clones were isolated from antigen-primed spleen and lymph node cell populations. Autoreactive T cells were found to proliferate in response to direct recognition of syngeneic I-A or I-E subregion-encoded antigens in the absence of any apparent foreign antigen. It was shown that cloned autoreactive T cells were capable of activating B cell responses through two distinct pathways. After appropriate stimulation by syngeneic cells, autoreactive T cells polyclonally activated primed or unprimed B cells to synthesize IgM antibodies. These activated T cells functioned in these responses through an MHC-unrestricted pathway in which polyclonal responses were induced in both syngeneic and allogeneic B cells. These cloned autoreactive T cells were also able to activate IgG responses by primed B cells through a different activation pathway. In contrast to the polyclonal activation of IgM responses, the induction of IgG antibodies by the same cloned T cells required primed B cells and stimulation with the priming antigen. The activation of B cells to produce IgG was strongly MHC restricted and required the direct recognition by the autoreactive T cells of self MHC determinants expressed on the B cell surface, with no bystander activation of allogeneic B cells. These results indicate that cloned autoreactive T cells resemble antigen-specific MHC-restricted T cells in their ability to function as T helper cells through distinct MHC-restricted and MHC-unrestricted pathways. 相似文献
7.
Echinacea plant preparations are widely used in the prevention and treatment of common cold. However, so far no molecular mechanism of action has been proposed. We analyzed the standardized tincture Echinaforce and found that it induced de novo synthesis of tumor necrosis factor alpha (TNF-alpha) mRNA in primary human monocytes/macrophages, but not TNF-alpha protein. Moreover, LPS-stimulated TNF-alpha protein was potently inhibited in the early phase but prolonged in the late phase. A study of the main constituents of the extract showed that the alkylamides dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (1/2), trienoic (3) and dienoic acid (4) derivatives are responsible for this effect. The upregulation of TNF-alpha mRNA was found to be mediated by CB2 receptors, increased cAMP, p38/MAPK and JNK signaling, as well as NF-kappaB and ATF-2/CREB-1 activation. This study is the first to report a possible molecular mechanism of action of Echinacea, highlighting the role of alkylamides as potent immunomodulators and potential ligands for CB2 receptors. 相似文献
8.
Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways 总被引:8,自引:0,他引:8
Chen YH Wu HL Chen CK Huang YH Yang BC Wu LW 《Biochemical and biophysical research communications》2003,310(3):804-810
Angiostatin consisting of the first four-kringle domains of the plasminogen potently inhibits angiogenesis in vitro and in vivo. However, the molecular mechanism of action whereby angiostatin mediates its inhibitory effect on proliferating endothelial cells remains elusive. We therefore used the proliferating cultured human umbilical vein endothelial cells (HUVECs) promoted by vascular endothelial growth factor A to identify the endogenous signaling elements that mediate the antiangiogenic effect of angiostatin. Treatment of HUVEC with angiostatin at a concentration known to inhibit cell proliferation and induce apoptosis resulted in induction of p53-, Bax-, and tBid-mediated release of cytochrome c into the cytosol. In addition, angiostatin also activated the Fas-mediated apoptotic pathway in part via up-regulation of FasL mRNA, down-regulation of c-Flip, and activation of caspase 3. These results suggest that the anti-angiogenic action of angiostatin is likely mediated by two distinct signaling pathways, one intrinsic mediated by p53 while the other extrinsic involved in FasL engagement and mitochondria dysfunction. 相似文献
9.
In Dictyostelium discoideum, cell density is monitored by levels of a secreted protein, conditioned medium factor (CMF). CMFR1 is a putative CMF receptor necessary for CMF-induced G protein-independent accumulation of the SP70 prespore protein but not for CMF-induced G protein-dependent inositol 1,4,5-trisphosphate production. Using recombinant fragments of CMF, we find that stimulation of the inositol 1,4,5-trisphosphate pathway requires amino acids 170-180, whereas SP70 accumulation does not, corroborating a two-receptor model. Cells lacking CMFR1 do not aggregate, due to the lack of expression of several important early developmentally regulated genes, including gp80. Although many aspects of early developmental cAMP-stimulated signal transduction are mediated by CMF, CMFR1 is not essential for cAMP-stimulated cAMP and cGMP production or Ca(2+) uptake, suggesting the involvement of a second CMF receptor. Exogenous application of antibodies against either the region between a first and second or a second and third possible transmembrane domain of CMFR1 induces SP70 accumulation. Antibody- and CMF-induced gene expression can be inhibited by recombinant CMFR1 corresponding to the region between the first and third potential transmembrane domains, indicating that this region is extracellular and probably contains the CMF binding site. These observations support a model where a one- or two-transmembrane CMFR1 regulates gene expression and a G protein-coupled CMF receptor mediates cAR1 signal transduction. 相似文献
10.
11.
12.
13.
14.
15.
16.
Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. 总被引:10,自引:4,他引:10 下载免费PDF全文
UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species. 相似文献
17.
18.
19.
Kumei Y Whitson PA 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》1994,1(1):P88-P89
A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells. 相似文献