首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two polymorphic loci and two additional probes that map close to CMM65, which is tightly linked to the polycystic kidney disease 1 (PKD1) locus in chromosome band 16p13.3, are described. These new probes were isolated from a library that was enriched by preparative pulsed-field gel electrophoresis (PFGE) for sequences from a 320-kb NotI fragment that includes CMM65. Through the use of a panel of somatic cell hybrids and PFGE, the new polymorphic loci, PNL56S and NKISP1, were localized within 60 kb and approximately 250 kb distal to CMM65, respectively. A long-range restriction map linking these new probes and the distal markers EKMDA2, CMM103, and alpha-globin was constructed. These latter probes have been localized to regions approximately 900 kb, 1.2 Mb, and 1.9 Mb distal to CMM65, respectively. The entire region was found to be unusually rich in CpG dinucleotides. The new polymorphic probes and the long-range map will aid both the search for the PKD1 locus and the detailed characterization of this distal region of 16p.  相似文献   

2.
A strategy is described for rapid chromosome region-specific mapping in hexaploid wheat (Triticum aestivum L. em. Thell., 2n=6x=42, AABBDD). The method involves allocation of markers to specific chromosome regions by deletion mapping and ordering of probes by high resolution genetic mapping in Triticum tauschii, the D-genome progenitor species. The strategy is demonstrated using 26 chromosome deletion lines for wheat homoeologous group-6. Twenty-five DNA probes from the T. tauschii genetic linkage map and six wheat homoeologous group-6 specific probes were mapped on the deletion lines. Twenty-four of the 25 probes from 6D of T. tauschii also mapped on wheat homoeologous group-6 chromosomes, and their linear order in wheat is the same as in T. tauschii. A consensus physical map of wheat group-6 was constructed because the linear order and the relative position of the probe loci was the same among the three group-6 chromosomes. Comparison of the consensus physical map with the genetic map demonstrated that most of the recombination occurs in the distal ends of the wheat chromosomes. Most of the loci mapped in the distal regions of the chromosomes. The probes were mostly either PstI genomic clones or cDNA clones indicating that the undermethylated single-copy sequences are concentrated in the distal ends of the wheat chromosomes. Fifteen loci are uniformly distributed in the distal 11% of the group-6 chromosomes. Physically, the region spans only 0.58 m, which in wheat translates to about 40 Mb of DNA. The average distance between the markers is, therefore, less than 2.7 Mb and is in the range of PFGE (pulsed-field gel electrophoresis) resolution. Any gene present in the region can be genetically ordered with respect to the markers since the average recombination frequency in the region is very high (>90 cM genetic distance).  相似文献   

3.
The locus responsible for the childhood-onset proximal spinal muscular atrophies (SMA) has recently been mapped to an area of 2–3 Mb in the region q12–13.3 of chromosome 5. We have used a series of radiation hybrids (RHs) containing distinct parts of the SMA region as defined by reference markers. A cosmid library was constructed from one RH. Thirteen clones were isolated and five of these were mapped within the SMA region. Both RH mapping and fluorescence in situ hybridization analysis showed that two clones map in the region between loci D5S125 and D5S351. One of the cosmids contains expressed sequences. Polymorphic dinucleotide repeats were identified in both clones and used for segregation analysis of key recombinant SMA families. One recombination between the SMA locus and the new marker 9Ic (D5S685) indicates that 9Ic is probably the closest distal marker. The absence of recombination between the SMA locus and marker Fc (D5S684) suggests that Fc is located close to the disease gene. These new loci should refine linkage analysis in SMA family studies and may facilitate the isolation of the disease gene.  相似文献   

4.
Buroker  N. E.  Magenis  R. E.  Weliky  K.  Bruns  G.  Litt  M. 《Human genetics》1986,72(1):86-94
Summary Human gene mapping would be greatly facilitated if marker loci with sufficient polymorphism information content were generally available. As a source of such markers, we have used cosmids from a human genomic library. We have used a rapid method for screening random cosmids to identify those homologous to genomic regions especially rich in restriction fragment length polymophisms (Litt and White 1985). This method allows whole cosmids to be used as probes against Southern transfers of genomic DNA; regions of cosmid probes homologous to repeated genomic sequences are rendered unable to anneal with Southern transfers by prerendered of the probes with a vast excess of non-radioactive genomic DNA. From one cosmid (C1-11) identified by this procedure, we have isolated four single-copy probes, each of which identifies a polymorphic locus. Despite the existence of some linkage disequilibrium in this system, the polymorthism information content was computed as 0.73. Using a somatic cell hybrid mapping panel, we have mapped probes from cosmid 1–11 to human chromosome 12q. Additionally, in situ hybridization of the whole cosmid to metaphase spreads allowed more precise assignment of the locus to the region 12cenq13. The locus revealed by probes from cosmid 1–11 has been designated D12S6.  相似文献   

5.
Radiation hybrid mapping was used in combination with physical mapping techniques to order and estimate distances between 14 loci in the proximal region of the short arm of the human X chromosome. A panel of radiation hybrids containing human X-chromosomal fragments was generated from a Chinese hamster-human cell hybrid containing an X chromosome as its only human DNA. Sixty-seven radiation hybrids were screened by Southern hybridization with sets of probes that mapped to the region Xp11.4-Xcen to generate a radiation hybrid map of the area. A physical map of 14 loci was constructed based on the segregation of the loci in the hybrid clones. Using pulsed-field gel electrophoresis (PFGE) analyses and a somatic cell hybrid mapping panel containing naturally occurring X; autosome translocations, the order of the 14 loci was verified and the loci nearest to the X-chromosomal translocation breakpoints associated with the disease incontinentia pigmenti 1 (IP1) were identified. The radiation hybrid panel will be useful as a mapping resource for determining the location, order, and distances between other genes and polymorphic loci in this region as well as for generating additional region-specific DNA markers.  相似文献   

6.
The epidermal differentiation complex (EDC) unites a remarkable number of structurally, functionally, and evolutionarily related genes that play an important role in terminal differentiation of the human epidermis. It is localized within 2.05 Mb of region q21 on human chromosome 1. We have identified and characterized 24 yeast artificial chromosome (YAC) clones by mapping individual EDC genes, sequence-tagged site (STS) markers (D1S305, D1S442, D1S498, D1S1664), and 10 new region-specific probes (D1S3619–D1S3628). Here we present a contig that covers about 6 Mb of 1q21 including the entire EDC. Fluorescencein situhybridization on metaphase chromosomes with two YACs flanking the EDC determined its chromosomal orientation and established, in conjunction with physical mapping results, the following order of genes and STSs: 1cen–D1S442–D1S498–S100A10–THH–FLG–D1S1664–IVL–SPRR3–SPRR1–SPRR2–LOR–S100A9–S100A8–S100A7–S100A6–S100A5–S100A4–S100A3–S100A2–S100A1–D1S305–1qtel. These integrated physical, cytogenetic, and genetic mapping data will be useful for linkage analyses of diseases associated with region 1q21 and for the identification of novel genes and regulatory elements in the EDC.  相似文献   

7.
In order to determine the genomic organization of the major histocompatibility complex (MHC) of the domestic cat (Felis catus), DNA probes for 61 markers were designed from human MHC reference sequences and used to construct feline MHC BAC contig map spanning ARE1 in the class II region to the olfactory receptor complex in the extended class I region. Selected BAC clones were then used to identify feline-specific probes for the three regions of the mammalian MHC (class II–class III–class I) for radiation hybrid mapping and fluorescent in situ hybridization to refine the organization of the domestic cat MHC. The results not only confirmed that the p-arm of domestic cat B2 is inverted relative to human Chromosome 6, but also demonstrated that one inversion breakpoint localized to the distal segment of the MHC class I between TRIM39 and TRIM26. The inversion thus disjoined the ~2.85 Mb of MHC containing class II–class III–class I (proximal region) from the ~0.50 Mb of MHC class I/extended class I region, such that TRIM39 is adjacent to the Chromosome B2 centromere and TRIM26 is adjacent to the B2 telomere in the domestic cat.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

8.
BACKGROUND: NTDs are considered complex disorders that arise from an interaction between genetic and environmental factors. NTD family 8776 is a large multigenerational Caucasian family that provides a unique resource for the genetic analysis of NTDs. Previous linkage analysis using a genome‐wide SNP screen in family 8776 with multipoint nonparametric mapping methods identified maximum LOD* scores of ~3.0 mapping to 2q33.1–q35 and 7p21.1–pter. METHODS: We ascertained an additional nuclear branch of 8776 and conducted additional linkage analysis, fine mapping, and haplotyping. Expression data from lymphoblast cell lines were used to prioritize candidate genes within the minimum candidate intervals. Genomic copy number changes were evaluated using BAC tiling arrays and subtelomeric fluorescent in situ hybridization probes. RESULTS: Increased evidence for linkage was observed with LOD* scores of ~3.3 for both regions. Haplotype analyses narrowed the minimum candidate intervals to a 20.3 Mb region in 2q33.1–q35 between markers rs1050347 and D2S434, and an 8.3 Mb region in 7p21.1–21.3 between a novel marker 7M0547 and rs28177. Within these candidate regions, 16 genes were screened for mutations; however, no obvious causative NTD mutation was identified. Evaluation of chromosomal aberrations using comparative genomic hybridization arrays, subtelomeric fluorescent in situ hybridization, and copy number variant detection techniques within the 2q and 7p regions did not detect any chromosomal abnormalities. CONCLUSIONS: This large NTD family has identified two genomic regions that may harbor NTD susceptibility genes. Ascertainment of another branch of family 8776 and additional fine mapping permitted a 9.1 Mb reduction of the NTD candidate interval on chromosome 7 and 37.3 Mb on chromosome 2 from previously published data. Identification of one or more NTD susceptibility genes in this family could provide insight into genes that may affect other NTD families. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
To date, several hundred nonchimeric yeast artificial chromosomes (YACs) from the Centre d'Étude du Polymorphisme Humain containing polymorphic sequence-tagged sites have been mapped by fluoresence in situ hybridization (FISH) on human metaphase chromosomes. Because they carry an average of 1 Mb of human genomic DNA, CEPH YACs generate high-intensity in situ hybridization signals. The available set of cytogenetically and genetically anchored YACs, approximately one every 5–10 cM evenly spaced over almost the entire human genome, provides complex region-specific probes for molecular cytogenetics. YAC probes can be adapted with unlimited flexibility to specific FISH applications such as the study of chromosomal evolution. We have generated representational probes for YAC banding and painting of human chromosome 2 and its great ape homologs. Convergent inversions were found in the pericentric region of the gorilla and orangutan homologs of chromosome 2p.  相似文献   

10.
RFLPs were detected in the five subunit genes of the human muscle nicotinic acetylcholine receptor (nAChR) using genomic DNA or cDNA probes from the homologous mouse loci. The RFLPs at the alpha-, beta-, gamma-, delta-, and epsilon-subunit gene loci were analyzed for genetic linkage in 16 families (n = 188). Significant evidence was obtained for close linkage of the β- and ε-nAChR genes and much greater genetic distance between the α-nAChR gene and the γ/δ-nAChR gene complex. The linkage analysis program CRI-MAP was used to map the positions of the β- and ε-nAChR genes relative to seven markers on chromosome 17. The results indicate the β- and ε-nAChR genes are separated by about 5 cM and located in the region of chromosome 17p occupied by D17S1, D17S31, TP53, and D17S513. The statistical evidence was confirmed by hybridization of the β- and ε-nAChR probes to a panel of human-hamster somatic cell hybrids. The α-, γ-, and δ-nAChR genes were placed on a map of 13 chromosome 2 markers. The linkage analysis placed the nAChR genes at two sites on chromosome 2q about equidistant from the marker CRYGP1, with the α-nAChR gene about 27 cM proximal and the γ/δ-nAChR gene complex about 31 cM distal to CRYGP1.  相似文献   

11.
Somatic cell hybrids retaining the deleted chromosome 17 from 15 unrelated Smith-Magenis syndrome (SMS) [del(17)(p11.2p11.2)] patients were obtained by fusion of patient lymphoblasts with thymidine kinase-deficient rodent cell lines. Seventeen sequence-tagged sites (STSs) were developed from anonymous markers and cloned genes mapping to the short arm of chromosome 17. The STSs were used to determine the deletion status of these loci in these and four previously described human chromosome 17-retaining hybrids. Ten STSs were used to identify 28 yeast artificial chromosomes (YACs) from the St. Louis human genomic YAC library. Four of the 17 STSs identified simple repeat polymorphisms. The order and location of deletion breakpoints were confirmed and refined, and the regional assignment of several probes and cloned genes were determined. The cytogenetic band locations and relative order of six markers on 17p were established by fluorescence in situ hybridization mapping to metaphase chromosomes. The latter data confirmed and supplemented the somatic cell hybrid results. Most of the hybrids derived from [del(17)(p11.2p11.2)] patients demonstrated a similar pattern of deletion for the marker loci and were deleted for D17S446, D17S258, D17S29, D17S71, and D17S445. However, one of them demonstrated a unique pattern of deletion. This patient is deleted for several markers known to recognize a large DNA duplication associated with Charcot-Marie-Tooth (CMT) disease type 1A. These data suggest that the proximal junction of the CMT1A duplication is close to the distal breakpoint in [del(17)(p-11.2p11.2)] patients.  相似文献   

12.
Subtelomeric regions of human chromosomes are the sites of increased meiotic recombination and have a male-to-female recombination ratio that is higher than elsewhere in the genome. We isolated two novel, polymorphic CA repeat markers from the distal part of the immunoglobulin heavy chain gene cluster, approximately 90 and 200 kb from the telomere of chromosome 14q. The 14q telomere was unambiguously located by physical mapping of telomeric YACs andBal31 exonuclease digestion of genomic DNA. We then constructed haplotypes using genotype data from these markers and data from sCAW1 (D14S826) for use as a highly polymorphic genetic marker. Linkage analysis using the 40 pedigree CEPH reference panel and genotype data from these and other loci physically mapped to the terminal 1.5 Mb of chromosome 14q revealed an apparent increase in meiotic recombination within this region, relative to the average rate for the genome. Further, we found that recombination was higher in females than in males, indicating that the subtelomeric region of 14q differs from other human subtelomeric regions.  相似文献   

13.
14.
Physical mapping of unique nucleotide sequences on identified rice chromosomes   总被引:10,自引:0,他引:10  
A physical mapping method for unique nucleotide sequences on specific chromosomal regions was developed combining objective chromosome identification and highly sensitive fluorescence in situ hybridisation (FISH). Four unique nucleotide sequences cloned from rice genomic DNAs, varying in size from 1.3 to 400 kb, were mapped on a rice chromosome map. A yeast artificial chromosome (YAC) clone with a 399 kb insert of rice genomic DNA was localised at the distal end of the long arm of rice chromosome (1q2.1) and a bacterial artificial chromosome (BAC) clone (180 kb) containing the rice leaf blast-resistant gene (Pi-b) was shown to occur at the distal end of the long arm of chromosome 2 (2q2.1). A cosmid (35 kb) with the resistance gene (Xa-21) against bacterial leaf blight was mapped on the interstitial region of the long arm on chromosome 11 (11q1.3). Furthermore a single RFLP marker, 1.29 kb in size, was mapped successfully to the distal region of the long arm of rice chromosome 4 (4q2.1). For precise localisation of the nucleotide sequences within the chromosome region, image analyses were effective. The BAC clone was localised to the specific region, 2q2.1:96.16, by image analysis. The result was compared with the known location of the BAC clone on the genetic map and the consistency was confirmed. The effectiveness and reliability in physically mapping nucleotide sequences on small plant chromosomes achieved by the FISH method using a variety of probes was unequivocally demonstrated.  相似文献   

15.
We have isolated a 14-kb DNA sequence containing a single homeobox from a low-stringency screen of a human genomic phage library by using heterologous homeobox sequences as probes. Chromosomal mapping of this clone using in situ hybridization to metaphase chromosomes and a panel of mouse x human somatic cell hybrids localized it to human chromosome 7p13-p15 in the region of the HOX 1 locus. We have sequenced the homeobox and show it has 100% identity to the deduced amino acid sequence of the mouse Hox-1.4 homeobox. We detect no restriction fragment length polymorphisms with the 14-kb clone, which is devoid of any moderately repetitive DNA sequences. This implies an inability of this region to tolerate change in sequence, consistent with a function highly conserved throughout evolution. The regions in the human genome where homeobox-containing loci reside share patterns of organization and sequence and have other gene loci in common, implying evolutionary constraints over these regions and providing clues on how they may have evolved.  相似文献   

16.
We report the isolation and characterization of a novel DNA marker (1A1) in Xqter in the region of the fragile X. Genetic studies in families segregating for the fragile X syndrome suggest that 1A1 lies between the disease mutation and the distal locus, DXS52. Studies in normal and fragile X families show that 1A1 is tightly linked to DXS52 (Zmax = 17.20; theta max = 0.03) and F8 (Zmax = 7.01; theta max = 0.08). Multipoint mapping of families supports the order Xcen-DXS105-FRAXA-1A1-DXS52-(F8, DXS115)-Xqter. Pulsed-field gel electrophoresis (PFGE) studies demonstrate that 1A1 defines a new region of at least 2 Mb of DNA not physically linked to DXS52 or F8, thus extending the physical map of Xq27-qter to over 4 Mb. Complex partial digestion PFGE patterns, probably due to differing degrees of methylation, are observed with 1A1 in unrelated normal and fragile-X-positive individuals, whereas other distal markers give uniform digestion profiles. Physical data suggest that 1A1 lies in a region less CpG rich than other distal markers in Xq27-qter.  相似文献   

17.
We used structural genomic resources for Sorghum bicolor (L.) Moench to target and develop multiple molecular cytogenetic probes that would provide extensive coverage for a specific chromosome of sorghum. Bacterial artificial chromosome (BAC) clones containing molecular markers mapped across sorghum linkage group A were labeled as probes for fluorescence in situ hybridization (FISH). Signals from single-, dual-, and multiprobe BAC-FISH to spreads of mitotic chromosomes and pachytene bivalents were associated with the largest sorghum chromosome, which bears the nucleolus organizing region (NOR). The order of individual BAC-FISH loci along the chromosome was fully concordant to that of marker loci along the linkage map. In addition, the order of several tightly linked molecular markers was clarified by FISH analysis. The FISH results indicate that markers from the linkage map positions 0.0-81.8 cM reside in the short arm of chromosome 1 whereas markers from 81.8-242.9 cM are located in the long arm of chromosome 1. The centromere and NOR were located in a large heterochromatic region that spans approximately 60% of chromosome 1. In contrast, this region represents only 0.7% of the total genetic map distance of this chromosome. Variation in recombination frequency among euchromatic chromosomal regions also was apparent. The integrated data underscore the value of cytological data, because minor errors and uncertainties in linkage maps can involve huge physical regions. The successful development of multiprobe FISH cocktails suggests that it is feasible to develop chromosome-specific "paints" from genomic resources rather than flow sorting or microdissection and that when applied to pachytene chromatin, such cocktails provide an especially powerful framework for mapping. Such a molecular cytogenetic infrastructure would be inherently cross-linked with other genomic tools and thereby establish a cytogenomics system with extensive utility in development and application of genomic resources, cloning, transgene localization, development of plant "chromonomics," germplasm introgression, and marker-assisted breeding. In combination with previously reported work, the results indicate that a sorghum cytogenomics system would be partially applicable to other gramineous genera.  相似文献   

18.
The lack of physical mapping data strongly restricts the analysis of the meningioma chromosomal region that was assigned to the bands 22q12.3-qter. Recently, we reported a new marker D22S16 for chromosome 22 that was assigned to the region 22q13-qter by in situ hybridization. Utilizing somatic cell hybrids we now sublocalized the marker D22S16 within the band region 22q12–13.1, thus placing it in the vicinity of the gene for the platelet derived growth factor (PDGFB). A physical map was established for the regions surrounding the PDGFB gene and the D22S16 marker. By means of pulsed-field gel electrophoresis (PFGE) D22S16 and PDGFB were found to be physically linked within 900 kb. We also identified two CpG clusters bordering the PDGFB gene. For the enzyme NotI, a variation of the PDGFB restriction pattern was found between different individuals. PFGE analysis of the two loci (PDFGB and D22S16) failed to identify major rearrangements in meningioma.  相似文献   

19.
N S Ma  T S Harris  P Watkins  L C Tsui 《Genomics》1989,5(3):389-396
We have demonstrated the assignments of two gene loci (COLIA2, MET) and two noncoding DNA markers (D7S13, D7S8) to owl monkey chromosome 14 (K-VI) by hybridizing DNA probes from the cystic fibrosis (CF) region of human chromosome 7q21-32 to panels of rodent-owl monkey somatic cell hybrids. The assignments are substantiated by in situ chromosome hybridization of markers COLIA2, MET, and D7S13 to the distal long arm of chromosome 14 (K-VI). These results support genomic conservation of the human CF region, at least in the higher primates.  相似文献   

20.
Huang XQ  Röder MS 《Genetica》2011,139(9):1179-1187
Genetic maps of wheat chromosome 1D consisting of 57 microsatellite marker loci were constructed using Chinese Spring (CS) × Chiyacao F2 and the International Triticeae Mapping Initiative (ITMI) recombinant inbred lines (RILs) mapping populations. Marker order was consistent, but genetic distances of neighboring markers were different in two populations. Physical bin map of 57 microsatellite marker loci was generated by means of 10 CS 1D deletion lines. The physical bin mapping indicated that microsatellite marker loci were not randomly distributed on chromosome 1D. Nineteen of the 24 (79.2%) microsatellite markers were mapped in the distal 30% genomic region of 1DS, whereas 25 of the 33 (75.8%) markers were assigned to the distal 59% region of 1DL. The powdery mildew resistance gene Pm24, originating from the Chinese wheat landrace Chiyacao, was previously mapped in the vicinity of the centromere on the short arm of chromosome 1D. A high density genetic map of chromosome 1D was constructed, consisting of 36 markers and Pm24, with a total map length of 292.7 cM. Twelve marker loci were found to be closely linked to Pm24. Pm24 was flanked by Xgwm789 (Xgwm603) and Xbarc229 with genetic distances of 2.4 and 3.6 cM, respectively, whereas a microsatellite marker Xgwm1291 co-segregated with Pm24. The microsatellite marker Xgwm1291 was assigned to the bin 1DS5-0.70-1.00 of the chromosome arm 1DS. It could be concluded that Pm24 is located in the ‘1S0.8 gene-rich region’, a highly recombinogenic region of wheat. The results presented here would provide a start point for the map-based cloning of Pm24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号