首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study aimed to determine the sex specificity and expression pattern of foxl2 and cyp19a1a genes in great sturgeon Huso huso gonads during gonadal sex differentiation and development. The results revealed that foxl2 and cyp19a1a mainly expressed in female gonads and during gonad development the foxl2 and cyp19a1a mRNA expression is required for ovarian development.  相似文献   

3.
Evolutionary fates of duplicated genes have been widely investigated in many polyploid plants and animals, but research is scarce in recurrent polyploids. In this study, we focused on foxl2, a central player in ovary, and elaborated the functional divergence in gibel carp (Carassius gibelio), a recurrent auto-allo-hexaploid fish. First, we identified three divergent foxl2 homeologs (Cgfoxl2a-B, Cgfoxl2b-A, and Cgfoxl2b-B), each of them possessing three highly conserved alleles and revealed their biased retention/loss. Then, their abundant sexual dimorphism and biased expression were uncovered in hypothalamic–pituitary–gonadal axis. Significantly, granulosa cells and three subpopulations of thecal cells were distinguished by cellular localization of CgFoxl2a and CgFoxl2b, and the functional roles and the involved process were traced in folliculogenesis. Finally, we successfully edited multiple foxl2 homeologs and/or alleles by using CRISPR/Cas9. Cgfoxl2a-B deficiency led to ovary development arrest or complete sex reversal, whereas complete disruption of Cgfoxl2b-A and Cgfoxl2b-B resulted in the depletion of germ cells. Taken together, the detailed cellular localization and functional differences indicate that Cgfoxl2a and Cgfoxl2b have subfunctionalized and cooperated to regulate folliculogenesis and gonad differentiation, and Cgfoxl2b has evolved a new function in oogenesis. Therefore, the current study provides a typical case of homeolog/allele diversification, retention/loss, biased expression, and sub-/neofunctionalization in the evolution of duplicated genes driven by polyploidy and subsequent diploidization from the recurrent polyploid fish.  相似文献   

4.
A Foxl2 cDNA was cloned from the Nile tilapia ovary by RT-PCR and subsequent RACE. Alignment of known Foxl2 sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame and protein sequences, especially the forkhead domain and C-terminal region, while some homopolymeric runs of amino acids are found only in mammals but not in non-mammalian vertebrates. RT-PCR revealed that Foxl2 is expressed in the tilapia brain (B), pituitary (P), gill, and gonads (G), with the highest level of expression in the ovary, reflecting the involvement of Foxl2 in B-P-G axis. Northern blotting and in situ hybridization also revealed an evident sexual dimorphic expression pattern in the gonads. Foxl2 mRNA was mainly detected in the granulosa cells surrounding the oocytes. The ovarian expression of Foxl2 in tilapia begins early during the differentiation of the gonads and persists until adulthood, implying the involvement of Foxl2 in fish gonad differentiation and the maintenance of ovarian function.  相似文献   

5.
Sea cucumber (Apostichopus japonicus) is an important mariculture species in China. To date, the mechanisms of sex determination and differentiation in sea cucumber remain unclear. Identifying sex-specific molecular markers is an effective method for revealing the genetic basis of sex determination and sex differentiation. In this study, foxl2 and nodal homologous genes were identified in A. japonicus. Foxl2 exhibited dynamic and sexually dimorphic expression patterns in the gonads, with prominent expression in the ovaries and minimal expression in the testis according to real-time quantitative PCR (RT-qPCR) study. As nodal was specifically expressed in the ovary, it could serve as an ovary-specific marker in sea cucumber. Additionally, knockdown of foxl2 or nodal using RNA interference (RNAi) led to the down-regulation of piwi, germ cell-less, and dmrt1, suggesting that foxl2 and nodal may play important roles in gonad maintenance of sea cucumber. Overall, this study adds to our understanding of the roles of foxl2 and nodal in the gonadal development of A. japonicus, which provides further insight into the mechanisms of sea cucumber sex determination and differentiation.  相似文献   

6.
7.
8.
Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary.
  相似文献   

9.
10.
11.
The circadian clock is responsible for the generation of circadian rhythms in hormonal secretion and metabolism. These peripheral clocks could be reset by various cues in order to adapt to environmental variations. The ovary can be characterized as having highly dynamic physiology regulated by gonadotropins. Here, we aimed to address the status of circadian clock in the ovary, and to explore how gonadotropins could regulate clockwork in granulosa cells (GCs). To this end, we mainly utilized the immunohistochemistry, RT-PCR, and real-time monitoring of gene expression methods. PER1 protein was constantly abundant across the daily cycle in the GCs of immature ovaries. In contrast, PER1 protein level was obviously cyclic through the circadian cycle in the luteal cells of pubertal ovaries. In addition, both FSH and LH induced Per1 expression in cultured immature and mature GCs, respectively. The promoter analysis revealed that the Per1 expression was mediated by the cAMP response element binding protein. In cultured transgenic GCs, both FSH and LH also induced the circadian oscillation of Per2. However, the Per2 oscillation promoted by FSH quickly dampened within only one cycle, whereas the Per2 oscillation promoted by LH was persistently maintained. Collectively, these findings strongly suggest that both FSH and LH play an important role in regulating circadian clock in the ovary; however, they might exert differential actions on the clockwork in vivo due to each specific role within ovarian physiology.  相似文献   

12.
为了解开花麻竹(Dendrocalamus latiflorus)的Dl AP2基因功能,采用RT-PCR和RACE技术克隆了mi R172a靶基因AP2同源序列c DNA全长,命名为Dl AP2。结果表明,Dl AP2基因c DNA全长为1729 bp,包含5′端非编码区81 bp、开放阅读框1464 bp、3′端非编码区160 bp和24个碱基的Poly A尾巴,在编码框靠近3′端130 bp处有1个高度匹配mi R172a的结合位点(CTGCAGCATCATCAGGATTCT)。Dl AP2编码487个氨基酸的蛋白,具有两个AP2结构域,属于AP2/ERF家族AP2亚家族的AP2组,与来自其它单子叶植物的AP2蛋白均有较高同源性。RLM-5′RACE分析表明,mi R172a主要在靶序列的第11~12个碱基之间剪切靶基因Dl AP2的mi RNA。q RT-PCR结果表明,麻竹花芽中Dl AP2基因的表达规律与mi R172a表达变化正好相反,证明mi R172a对Dl AP2基因的表达具有调控作用。  相似文献   

13.
14.
To distinguish the cytoplasm of Danio rerio from that of Gobiocypris rarus, we cloned G. rarus COXI and constructed cytoplasmic molecular markers at the high identity domains of COXI by mutated primer PCR (MP-PCR for short). Then Sybr Green I was used to detect the single amplicon. As a result, we succeeded in getting the cytoplasmic molecular markers, G.M COXI and Z.M COXI, by MP-PCR strategy. They were used to detect the sperm-derived mtDNA in the sexual hybrid embryos (D. rerio ♀ × G. rarus ♂) before the sphere stage. In the present study, all results demonstrate that MP-PCR approach and Sybr Green I detection are feasible to construct the molecular markers to identify genes that shared high identity.  相似文献   

15.
The expression of metabolic enzyme genes and heat-shock protein genes (Hsp) during early embryogenesis in diapause and non-diapause eggs of the silkworm Bombyx mori was quantified by semi-quantitative RT-PCR. The trehalase gene (Tre) was expressed in non-diapause eggs up-to nine days, while in diapause eggs was not up regulated. The glycogen phosphorylase gene (GPase) was expressed in non-diapause eggs, whereas in diapause eggs a high level was observed in early stage, but down regulated in later stage. The phosphofructokinase gene (PFK) and sorbitol dehyrogenase-2 gene (SDH-2) expression was fluctuated in non-diapause eggs, whereas in diapause eggs these were expressed only at early stage and not observed in later stage. The glucose-6-phosphate dehydrogenase gene (G6P-DH) in non-diapause eggs was highly expressed during the differentiation phase and decreased in the organogenesis phase. In contrast to this, expression in diapause eggs was of low level during differentiation phase and of high level observed in the organogenesis phase. In the tissues, PFK and SDH-2 were selectively expressed in cuticle and midgut, whereas Tre expression was high in midgut and ovary of larvae incubated at 15°C. The Hsp (20.4, 20.8, 40, 70, and 90) were expressed in both diapause and non-diapause eggs. Their expression was, however, selective in tissues with Hsp20.4 in midgut and ovary, Hsp40 in head, Hsp70 in cuticle and Hsp90 in ovary and head in high amounts at 15°C. These results suggest that the metabolic enzyme genes studied except Hsp play a major role during embryogenesis of diapause and non-diapause silkworm.  相似文献   

16.
Antioxidant enzymes play important roles in the protection against oxidative damage caused by environmental pollutants by scavenging high levels of reactive oxygen species and have been quantified as oxidative stress markers. However, combining mRNA expressions of genes coding for detoxification enzymes along with enzyme activities will be more useful biomarkers of stress. Therefore, in this study the cDNA of the catalase gene from the aquatic midge, Chironomus riparius (CrCAT) was sequenced using 454 pyrosequencing. The 2139 bp CrCAT cDNA included an open reading frame of 1503 bp encoding a putative protein of 500 amino acids with a predicted molecular mass of 56.72 kDa. There was an 18 bp 5’ and a long 618 bp 3' untranslated region with a polyadenylation signal site (AATAAA). The deduced amino acid sequence of CrCAT contained several highly conserved motifs including the proximal heme–ligand signature sequence RLFSYNDTX and the proximal active site signature FXRERIPERVVHAKGXGA. A comparative analysis showed the presence of conserved amino acid residues and all of the catalytic amino acids (His70, Asn143, and Tyr353) were conserved in all species. The CrCAT contained three potential glycosylation sites and a peroxisome targeting signal of ‘AKM’. The mRNA was detected using RT-PCR at all developmental stages. The time-course expression of CrCAT was measured using quantitative real-time PCR after exposure to different concentration and durations of Paraquat (PQ), cadmium chloride (Cd) and nonylphenol (NP). The expression of CrCAT was significantly up regulated on exposure to 50 and 100 mg/L PQ for 12 and 24 h. Among the different concentrations and durations of Cd tested, significantly highest level of expression for CrCAT mRNA and catalase enzyme activity was observed on exposure to 10 mg/L for 24 h. In the case of NP, the highest level of CrCAT expression was observed after exposure to 100 μg/L for 24 h. The expression profiles of three selected C. riparius glutathione S-transferase genes (CrGSTs) viz. CrGSTdelta3, CrGSTsigma4 and CrGSTepsilon1 was also studied on exposure to NP and were up or down regulated at different time points and concentrations. Significantly highest level of expression for CrGSTdelta3 was observed after 48 h and for CrGSTsigma4 and CrGSTepsilon1 after 24 h exposure to 100 μg/L of NP. The results show that CrGSTs and CrCAT could be used as potential biomarkers in C. riparius for aquatic ecotoxicological studies.  相似文献   

17.
In order to identify genes involved in oogenesis and spermatogenesis in penaeid shrimp Marsupenaeus japonicus, a modified annealing control primer (ACP) system was adapted to identify genes differentially expressed in ovary and testis at different developmental stages. By using 20 pairs of ACP primers, 8 differentially expressed genes were obtained. One of these genes is ubiquitin-conjugating enzyme E2r (UBE2r). Bioinformatics analyses show that this gene encodes a protein of 241 amino acids with a predicted molecular mass of 27.4 kDa. Real time PCR analyses demonstrated that the expression level changed significantly in the developing testis and ovary. In the stage 2 of testis, it reached its highest expression level, the lowest expression level present in the stage 1 of ovary. The significantly different expression levels in developing testis and ovary suggest that UBE2r has an important role in oogenesis and spermatogenesis. This article is the first report of UBE2r in crustaceans and also is the first report showing that UBE2r is differentially expressed at different stages of the developing ovary and testis in an animal.  相似文献   

18.
19.
20.
The expression of theSRS2 gene, which encodes a DNA helicase involved in DNA repair inSaccharomyces cerevisiae, was studied using anSRS2-lacZ fusion integrated at the chromosomalSRS2 locus. It is shown here that this gene is expressed at a low level and is tightly regulated. It is cell-cycle regulated, with induction probably being coordinated with that of the DNA-synthesis genes, which are transcribed at the G1-S boundary. It is also induced by DNA-damaging agents, but only during the G2 phase of the cell cycle; this distinguishes it from a number of other repair genes, which are inducible throughout the cycle. During meiosis, the expression ofSRS2 rises at a time nearly coincident with commitment to recombination. Sincesrs2 null mutants are radiation sensitive essentially when treated in G1, the mitotic regulation pattern described here leads us to postulate that either secondary regulatory events limit Srs2 activity to G1 cells or Srs2 functions in a repair mechanism associated with replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号