首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
弱氧化葡糖杆菌ddsA基因在大肠杆菌不同宿主菌中的表达   总被引:4,自引:0,他引:4  
泛醌(辅酶Q)在生物体氧化呼吸链中作为重要的质子和电子传递物质。聚十异戊烯焦磷酸合成酶催化辅助酶Q10的侧链的生物合成。为了获得高产辅助酶Q10的菌株,将选择了10种不同大肠杆菌宿主菌用于弱氧化葡糖杆菌的聚十异戊烯焦磷酸合成酶基因ddsA的表达,通过产物分析证实该基因能在大肠杆菌中表达出有活性的聚十异戊烯焦磷酸合成酶,使大肠杆菌合成了辅酶Q10。此外,还发现在Escherichia coli HB101这一菌株中,ddsA的表达使辅酶Q10的产量略超过了在野生型中占主导地位的辅酶Q8的产量。该结果证明了利用大肠杆菌大规模发酵生产辅酶Q10的可能性。  相似文献   

2.
Coenzyme Q10 (CoQ10) is a quinine consisting of ten units of the isoprenoid side-chain. Because it limits the oxidative attack of free radicals to DNA and lipids, CoQ10 has been used as an antioxidant for foods, cosmetics and pharmaceuticals. Decaprenyl diphosphate synthase (DPS) is the key enzyme for synthesis of the decaprenyl tail in CoQ10 with isopentenyl diphosphate. The ddsA gene coding for DPS from Gluconobacter suboxydans was expressed under the control of an Escherichia coli constitutive promoter. Analysis of the cell extract in recombinant E. coli BL21/pACDdsA by high performance liquid chromatography and mass spectrometry showed that CoQ10 rather than endogenous CoQ8 was biologically synthesized as the major coenzyme Q. Expression of the ddsA gene with low copy number led to the accumulation of CoQ10 to 0.97 mg l–1 in batch fermentation. A high cell density (103 g l–1) in fed-batch fermentation of E. coli BL21/pACDdsA increased the CoQ10 concentration to 25.5 mg l –1 and its productivity to 0.67 mg l–1 h–1, which were 26.0 and 6.9 times higher than the corresponding values for batch fermentation.  相似文献   

3.
Coenzyme Q10 (CoQ10), a strong antioxidant, is used extensively in food, cosmetic and medicine industries. A natural producer, Rhodopseudomonas palustris, was engineered to overproduce CoQ10. For increasing the CoQ10 content, crtB gene was deleted to block the carotenoid pathway. crtB gene deletion led to 33% improvement of CoQ10 content over the wild type strain. However, it was found that the yield of hopanoids was also increased by competing for the precursors from carotenoid pathway with CoQ10 pathway. To further increase the CoQ10 content, hopanoid pathway was blocked by deleting shc gene, resulting in R. palustris [Δshc, ΔcrtB] to produce 4·7 mg g−1 DCW CoQ10, which was 1·2 times higher than the CoQ10 content in the wild type strain. The common strategy of co-expression of rate-limiting enzymes (DXS, DPS and UbiA) was combined with the pathway blocking method resulted in 8·2 mg g−1 DCW of CoQ10, which was 2·9 times higher than that of wild type strain. The results suggested a synergistic effect among different metabolic engineering strategies. This study demonstrates the potential of R. palustris for CoQ10 production and provides viable strategies to increase CoQ10 titer.  相似文献   

4.
Mycobacterium tuberculosis (Mtb) has a highly complex cell wall, which is required for both bacterial survival and infection. Cell wall biosynthesis is dependent on decaprenyl diphosphate as a glyco-carrier, which is hence an essential metabolite in this pathogen. Previous biochemical studies indicated (E)-geranyl diphosphate (GPP) is required for the synthesis of decaprenyl diphosphate. Here we demonstrate that Rv0989c encodes the “missing” GPP synthase, representing the first such enzyme to be characterized from bacteria, and which presumably is involved in decaprenyl diphosphate biosynthesis in Mtb. Our investigation also has revealed previously unrecognized substrate plasticity of the farnesyl diphosphate synthases from Mtb, resolving previous discrepancies between biochemical and genetic studies of cell wall biosynthesis.  相似文献   

5.
By the optimization of nitrogen source for coenzyme Q10 (ubiquinone, CoQ10) production in Agrobacterium tumefaciens KCCM 10413 culture, the highest CoQ10 production was achieved in medium containing corn steep powder (CSP). Components for a stimulatory effect on the production of CoQ10 in CSP were screened, and lactate was found to increase dry cell weight (DCW) and the specific CoQ10 content. In a fed-batch culture of A. tumefaciens, supplementation with 1.5 g of lactate l−1 further improved DCW, the specific CoQ10 content, and CoQ10 production by 16.0, 5.8, and 22.8%, respectively. It has been reported that lactate stimulates cell growth and acts as an accelerator driving the tricarboxylic acid (TCA) cycle (Roberto et al. 2002, Biotechnol Let 24:427–431; Matsuoka et al. 1996, Biosci Biotechnol Biochem 60:575–579). In this study, lactate supplementation increased DCW and the specific CoQ10 content in A. tumefaciens culture, probably by accelerating TCA cycle and energy production as reported previously, leading to the increase of CoQ10 production.  相似文献   

6.
Experiments have been performed to prove the existence and the functionality of the novel mevalonate independent 1-deoxyxylulose 5-phosphate isoprenoid biosynthesis pathway in cyanobacteria. For this purpose, a segment of the 1-deoxyxylulose 5-phosphate synthase gene (dxs) was amplified from Synechococcus leopoliensis SAUG 1402-1 DNA via PCR using oligonucleotides for conserved regions of dxs. Subsequent hybridization screening of a genomic cosmid library of S. leopoliensis with this segment has led to the identification of an 18.7 kbp segment of the S. leopoliensis genome on which a dxs homologous gene and two adjacent open reading frames organized in one operon could be localized by DNA sequencing. The three genes of the operon were separately expressed in Escherichia coli, proving that the identified cyanobacterial dxs is functionally involved in the formation of dimethylallyl diphosphate, one basic intermediate of isoprenoid biosynthesis.  相似文献   

7.
The purpose of these studies was to prepare and characterize nanoparticles into which Coenzyme Q10 (CoQ10) had been incorporated (CoQ10-NPs) using a simple and potentially scalable method. CoQ10-NPs were prepared by cooling warm microemulsion precursors composed of emulsifying wax, CoQ10, Brij 78, and/or Tween 20. The nanoparticles were lyophilized, and the stability of CoQ10-NPs in both lyophilized form and aqueous suspension was monitored over 7 days. The release of CoQ10 from the nanoparticles was investigated at 37°C. Finally, an in vitro study of the uptake of CoQ10-NPs by mouse macrophage, J774A.1, was completed. The incorporation efficiency of CoQ10 was approximately 74%±5%. Differential Scanning Calorimetry (DSC) showed that the nanoparticle was not a physical mixture of its individual components. The size of the nanoparticles increased over time if stored in aqueous suspension. However, enhanced stability was observed when the nanoparticles were stored at 4°C. Storage in lyophilized form demonstrated the highest stability. The in vitro release profile of CoQ10 from the nanoparticles showed an initial period of rapid release in the first 9 hours followed by a period of slower and extended release. The uptake of CoQ10-NPs by the J774A.1 cells was over 4-fold higher than that of the CoQ10-free nanoparticles (P<.05). In conclusion, CoQ10-NPs with potential application for oral CoQ10 delivery were engineered readily from microemulsion precursors.  相似文献   

8.
In higher plants, two independent pathways are responsible for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central five-carbon precursors of all isoprenoids. The cytosolic pathway, which involves mevalonate (MVA) as a key intermediate, provides the precursor molecules for sterols, ubiquinone, and certain sesquiterpenes, whereas the plastidial MVA-independent pathway is involved in the formation of precursors for the biosynthesis of isoprene, monoterpenes, diterpenes, carotenoids, abscisic acid, and the side chains of chlorophylls, tocopherols, and plastoquinone. Recent experiments provided indirect evidence for the presence of an export system for isoprenoid intermediates from the plastids to the cytosol in Arabidopsis thaliana. Here we report that isolated chloroplasts (from spinach, kale, and Indian mustard), envelope membrane vesicles, and proteoliposomes prepared from the solubilized proteins of envelope membranes (from spinach) are capable of the efficient transport of isopentenyl diphosphate and geranyl diphosphate. Lower rates of transport were observed with the substrates farnesyl diphosphate and dimethylallyl diphosphate, whereas geranylgeranyl diphosphate and mevalonate were not transported with appreciable efficiency. Our data suggest that plastid membranes possess a unidirectional proton symport system for the export of specific isoprenoid intermediates involved in the metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis.  相似文献   

9.

Coenzyme Q (CoQ) is composed of a benzoquinone moiety and an isoprenoid side chain of varying lengths. The length of the side chain is controlled by polyprenyl diphosphate synthase. In this study, dps1 genes encoding decaprenyl diphosphate synthase were cloned from three fungi: Bulleromyces albus, Saitoella complicata, and Rhodotorula minuta. The predicted Dps1 proteins contained seven conserved domains found in typical polyprenyl diphosphate synthases and were 528, 440, and 537 amino acids in length in B. albus, S. complicata, and R. minuta, respectively. Escherichia coli expressing the fungal dps1 genes produced CoQ10 in addition to endogenous CoQ8. Two of the three fungal dps1 genes (from S. complicata and R. minuta) were able to replace the function of ispB in an E. coli mutant strain. In vitro enzymatic activities were also detected in recombinant strains. The three dps1 genes were able to complement a Schizosaccharomyces pombe dps1, dlp1 double mutant. Recombinant S. pombe produced mainly CoQ10, indicating that the introduced genes were independently functional and did not require dlp1. The cloning of dps1 genes from various fungi has the potential to enhance production of CoQ10 in other organisms.

  相似文献   

10.
For the enhancement of coenzyme Q10 (CoQ10) production, 1-deoxy-d-xylulose 5-phosphate (DXP) synthase of Pseudomonas aeruginosa was constitutively coexpressed in a recombinant Escherichia coli strain, which harbors the ddsA gene from Gluconobacter suboxydans encoding decaprenyl diphosphate synthase. It was found that the expression of the ddsA gene caused depletion of the isopentenyl diphosphate (IPP) pool in E. coli. Amplification of DXP synthase level by installing P. aeruginosa DXP synthase restored the diminished IPP pool and concomitantly resulted in approximately a twofold increase in relative content and productivity of CoQ10. Maximum CoQ10 concentration of 46.1 mg l−1 was achieved from glucose-limited fed-batch cultivation of the recombinant E. coli strain simultaneously harboring the ddsA and dxs genes.  相似文献   

11.
In biotechnology, the heterologous biosynthesis of isoprenoid compounds in Escherichia coli is a field of great interest and growth. In order to achieve higher isoprenoid yields in heterologous E. coli strains, it is necessary to quantify the pathway intermediates and adjust gene expression. In this study, we developed a precise and sensitive nonradioactive method for the simultaneous quantification of the isoprenoid precursors farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) in recombinant and wild-type E. coli cells. The method is based on the dephosphorylation of FPP and GGPP into the respective alcohols and involves their in situ extraction followed by separation and detection using gas chromatography–mass spectrometry. The integration of a geranylgeranyl diphosphate synthase gene into the E. coli chromosome leads to the accumulation of GGPP, generating quantities as high as those achieved with a multicopy expression vector. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. Vallon and S. Ghanegaonkar contributed equally to this work.  相似文献   

12.
The polyisoprenoid alcohols (dolichols and polyprenols) are found in all living organism, from bacteria to mammals. In animal and yeast cells polyisoprenoids are derived from the cytoplasmic mevalonate (MVA) pathway while in plants two biosynthetic pathways, the MVA and the plastidial methylerythritol phosphate (MEP) pathway provide precursors for polyisoprenoid biosynthesis. The key enzymes of polyisoprenoid synthesis are cis-prenyltransferases (CTPs), responsible for construction of the long hydrocarbon skeleton. CPTs elongate a short all-trans precursor, oligoprenyl diphosphate, by sequential addition of the desired number of isopentenyl diphosphate molecules which results in formation of a stretch of cis units. Several genes encoding CPT have been cloned from bacteria, plants and mammals. Interestingly, in Arabidopsis, the tissue-specific expression of ten putative cis-prenyltransferases was observed. In contrast to polyisoprenoid phosphates serving as cofactors in the biosynthesis of glycoproteins, glucosyl phosphatidyl inositol (GPI) anchor or bacterial peptidoglycan, the biological importance of polyprenols and dolichols still remains a question of debate besides their function of reservoir of substrates for kinase. These extremely hydrophobic superlipids are postulated to be involved in intracellular traffic of proteins and in cellular defense against adverse environmental conditions. Recent publications show a direct link between the dolichol biosynthetic pathway and congenital disorders of glycosylation (CDG). These discoveries highlighting the cellular significance of polyisoprenoids simultaneously establish the background for future pharmacological interventions. Our mini-review summarizes the results of recent studies on polyisoprenoids.  相似文献   

13.
The cell growth and CoQ10 (coenzyme Q10) formation of Rhizobium radiobacter WSH2601 were investigated in a 7-1 bioreactor under different dissolved oxygen (DO) concentrations. A maximal CoQ10 content (C/B) of 1.91 mg/g dry cell weight (DCW) and CoQ10 concentration of 32.1 mg/l were obtained at the appropriate DO concentration of 40% (of air saturation). High DO concentration was favourable to the cell growth of Rhizobium radiobacter WSH2601. In order to achieve the maximal yield of CoQ10 production, a new DO-stat feeding strategy was proposed, which significantly improved cell growth and CoQ10 formation. With this strategy, the maximal CoQ10 concentration and DCW reached 51.1 mg/l and 23.9 g/l, respectively, which were 67 and 44.8% higher than those obtained in the batch culture with DO concentration controlled.  相似文献   

14.
微生物发酵法是生产辅酶Q10的最佳工艺.辅酶Q10的生物合成途径包括异戊二烯焦磷酸合成、聚十异戊二烯焦磷酸合成、苯环修饰等过程.1-脱氧-D-木酮糖-5-磷酸合成酶、聚十异戊二烯焦磷酸合成酶、对羟基笨甲酸聚十异戊二烯焦磷酸转移酶等是Q10合成的关键酶.生产辅酶Q10的菌种可通过诱变、基因重组和支路敲除等方法获得.氧化还原电位控制、pH控制补料分批发酵、发酵萃取耦合技术等新工艺逐浙应用于辅酶Q10生产.  相似文献   

15.
16.
The production yield of Coenzyme Q10 (CoQ10) from the sucrose consumed by Agrobacterium tumefaciens KCCM 10413 decreased, and high levels of exopolysaccharide (EPS) accumulated after switching from batch culture to fed-batch culture. Therefore, we examined the effect of sucrose concentration on the fermentation profile by A. tumefaciens. In the continuous fed-batch culture with the sucrose concentration maintained constantly at 10, 20, 30, and 40 g l−1, the dry cell weight (DCW), specific CoQ10 content, CoQ10 production, and the production yield of CoQ10 from the sucrose consumed increased, whereas EPS production decreased as maintained sucrose concentration decreased. The pH-stat fed-batch culture system was adapted for CoQ10 production to minimize the concentration of the carbon source and osmotic stress from sucrose. Using the pH-stat fed-batch culture system, the DCW, specific CoQ10 content, CoQ10 production, and the product yield of CoQ10 from the sucrose consumed increased by 22.6, 13.7, 39.3, and 39.3%, respectively, whereas EPS production decreased by 30.7% compared to those of fed-batch culture in the previous report (Ha SJ, Kim SY, Seo JH, Oh DK, Lee JK, Appl Microbiol Biotechnol, 74:974–980, 2007). The pH-stat fed-batch culture system was scaled up to a pilot scale (300 l), and the CoQ10 production results obtained (626.5 mg l−1 of CoQ10 and 9.25 mg g DCW−1 of specific CoQ10 content) were similar to those obtained at the laboratory scale. Thus, an efficient and highly competitive process for microbial CoQ10 production is available.  相似文献   

17.
Coenzyme Q10 (CoQ10), like other CoQs of various organisms, plays indispensable roles not only in energy generation but also in several other processes required for cells’ survival. In this study, a gene encoding for a decaprenyl diphosphate synthase (Rsdds) was cloned from Rhodobacter sphaeroides in Escherichia coli. The in vivo catalytic activity and product specificity of Rsdds were compared with those of a counterpart enzyme from Agrobacterium tumefaciens (Atdds) in E. coli as a heterologous host. In contrast with Atdds, Rsdds showed lower catalytic activity but higher product specificity for CoQ10 production, as indicated by the amount of CoQ9 formation. The higher product specificity of Rsdds was also confirmed by utilizing both Rsdds and Atdds for in vitro synthesis of polyprenyl diphosphates. Thin layer chromatography indicated that the Rsdds enzyme resulted in relatively much less solanesyl diphosphate formation. The purified Rsdds catalyzed the addition of isopentenyl diphosphate to dimethyl allyl diphosphate, geranyl diphosphate, ω,E,E-farnesyl diphosphate (FPP), and ω,E,E,E-geranylgeranyl diphosphate as priming substrates. The kinetic parameters of V max (pmol/min), K M (μM), k cat (1/min), and k cat /K M of the enzyme using FPP as the most appropriate substrate were determined to be 264.6, 13.1, 8.8, and 0.67, respectively.  相似文献   

18.
CoQ10具有呼吸链电子传递者、抗氧化性、调控基因表达等多种生理生化功能,目前不仅用作药物也用作食品添加剂。微生物发酵法是目前生产CoQ10最有效的方法。本文就有关微生物CoQ合成途径及基于CoQ合成途径的CoQ10生产菌株分子生物学改造的策略与研究进展进行了综述和展望。  相似文献   

19.
The Zygomycetes Phycomyces blakesleeanus and Blakeslea trispora are actual or potential sources of β-carotene, ergosterol, ubiquinone, edible oil, and other compounds. By feeding [14C]acetyl-CoA, L-[14C]leucine, or R-[14C]mevalonate in the presence of excess unlabeled glucose, we found that ubiquinone (the terpenoid moiety), β-carotene, and triacylglycerols were made from separate pools of all their common intermediates; the pools for ubiquinone and ergosterol were indistinguishable. Fatty acids were not labeled from mevalonate, showing the absence in these fungi of a shunt pathway that would recycle carbon from mevalonate and its products back to central metabolism. The overproduction of carotene in a Phycomyces mutant and in sexually mated cultures of Blakeslea modified the relative use of labeled and unlabeled carbon sources in the production of carotene, but not of the other compounds. We concluded that carotene, ubiquinone, and triacylglycerols are synthesized in separate subcellular compartments, while sterols and ubiquinone are synthesized in the same compartments or in compartments that exchange precursors. Carotene biosynthesis was regulated specifically and not by flow diversion in a branched pathway.  相似文献   

20.
The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for β-carotene production in recombinant Escherichia coli harboring β-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of β-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and β-carotene synthesis genes produced high amount of β-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains – MG1655, DH5α, S17-1, XL1-Blue and BL21 – the DH5α was found to be the best β-carotene producer. Using glycerol as the carbon source for β-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5α harboring the whole MVA pathway and β-carotene synthesis genes produced β-carotene of 465 mg/L at glycerol concentration of 2% (w/v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号