首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated inflammatory and demyelinating disease of the central nervous system with clinical and pathological similarities with multiple sclerosis. The oxidative stress is one of the major mediators of demyelination and axonal damage in both, multiple sclerosis and EAE. Therefore, several studies are being performed to assess whether treatment with antioxidants prevents the progression of these diseases. Some organic forms of selenium that exhibit glutathione peroxidase-like activity have become good candidates for disease prevention and therapy since they catalytically remove oxidative stressors. Particularly, diphenyl diselenide ((PhSe)2) exerts antioxidant activity and has neuroprotective effects in several systems. The aim of the present study was to prove the therapeutic activity of (PhSe)2 on the development of EAE. Intraperitoneally administered (PhSe)2 (1–25 μmoles/kg body weight/day) reduced the incidence of the disease but was also deleterious for the animals. Conversely, (PhSe)2 given orally (80 μmoles/kg body weight/day) produced a significant inhibition of EAE without any toxic effect. In addition, there was a reduction of the characteristic histological alterations and a diminished in vivo and in vitro T-cell response against the encephalitogenic myelin basic protein. These results show an effective suppression of the autoimmune response that could be the base for future developments of successful antioxidants therapies in EAE as well as in multiple sclerosis.  相似文献   

2.
(PhSe)2Hg reacts initially with HgBr2 and further with 1,3-bis(4-nitrophenyl)triazene to give [(PhSe)7Hg4BrPy]n (Py = pyridine) the first polymeric assembling of (μ-Se)Hg clusters obtained with a triazene as coordinating intermediary ligand. Each single molecule of adamantane alike [(PhSe)7Hg4BrPy] presents the HgII ions with a distorted tetrahedral configuration linked through asymmetric [μ-(Ph)Se] bridges. [(PhSe)7Hg4BrPy]n represents an example of extended one-dimensional chains of closed anisotropic ME (E = S, Se, Te) systems. In these reactions the features of the intermediary ligands should determine the template which leads to single adamantane moieties or to fused ones.  相似文献   

3.
(PhSe)2Hg reacts initially with HgX2 (X = Cl, I) and further with triphenylphosphine/DMF to give [(PhSe)7Hg4ClPy]n (1) and [(PhSe)7Hg4I(DMF)]n (2), polymeric assemblies of (μ-Se)Hg clusters obtained through coordinating intermediary ligands. Each single adamantoid molecule of 1 and 2 presents the HgII ions with a distorted tetrahedral configuration linked through asymmetric [μ-(Ph)Se] bridges. [(PhSe)7Hg4ClPy]n and [(PhSe)7Hg4I(DMF)]n are further examples of extended one-dimensional chains of closed anisotropic ME (E = S, Se, Te) systems. In these reactions the features of the intermediary ligands should determine the template which leads to single adamantane moieties or to fused ones.  相似文献   

4.
5.
Here, we evaluated combinations of diphenyl diselenide [(PhSe)2] with fluconazole and amphotericin B in a checkerboard assay against clinical Candida glabrata strains. Minimal inhibitory concentration (geometric mean) ranged from 0.25 to >64 (5.16 μg/mL) for (PhSe)2, 1 to 32 (5.04 μg/mL) for fluconazole and 0.06 to 0.5 (0.18 μg/mL) for amphotericin B. Synergistic (76.66 %) and indifferent (23.34 %) interactions were observed for (PhSe)2 + amphotericin B combination. (PhSe)2 + fluconazole combination demonstrated indifferent (50 %) and antagonistic (40 %) interactions, whereas synergistic interactions were observed in 10 % of the isolates. New experimental in vivo protocols are necessary and will promote a better understanding of the antimicrobial activity of (PhSe)2 against C. glabrata and its use as an adjuvant therapy with antifungal agents.  相似文献   

6.
Multiple sclerosis incidence is clearly inversely related to sun exposure. This observation led to the idea that vitamin D might be responsible for this relationship. Providing super-physiologic doses of the hormonal form of vitamin D, 1α,25-dihydroxyvitamin D3, suppresses an animal model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE) but causes unwanted hypercalcemia. Further, dietary calcium is needed for this activity of 1α,25-dihydroxyvitamin D3. B10PL mice were maintained on a vitamin D-deficient diet for two generations to produce frank vitamin D deficiency. These animals showed delayed onset and reduced severity of EAE compared to control animals on the same diet and given vitamin D3 or provided a vitamin D-containing chow diet. Thus, vitamin D deficiency interferes with the development of this autoimmune disease rather than increasing susceptibility.  相似文献   

7.
The acute liver failure (ALF) induced by acetaminophen (APAP) is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe)2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe)2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe)2 to the N-acetylcysteine (NAC) during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg), (PhSe)2 (15.6 mg/kg), NAC (1200 mg/kg), APAP+(PhSe)2 or APAP+NAC, where the (PhSe)2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation) and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe)2. The effectiveness of (PhSe)2 was similar at a lower dose than NAC. In summary, (PhSe)2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced.  相似文献   

8.
Ninjurin1 is a homotypic adhesion molecule that contributes to leukocyte trafficking in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, in vivo gene deficiency animal studies have not yet been done. Here, we constructed Ninjurin1 knock-out (KO) mice and investigated the role of Ninjurin1 on leukocyte trafficking under inflammation conditions such as EAE and endotoxin-induced uveitis. Ninjurin1 KO mice attenuated EAE susceptibility by reducing leukocyte recruitment into the injury regions of the spinal cord and showed less adhesion of leukocytes on inflamed retinal vessels in endotoxin-induced uveitis mice. Moreover, the administration of a custom-made antibody (Ab26–37) targeting the Ninjurin1 binding domain ameliorated the EAE symptoms, showing the contribution of its adhesion activity to leukocyte trafficking. In addition, we addressed the transendothelial migration (TEM) activity of bone marrow-derived macrophages and Raw264.7 cells according to the expression level of Ninjurin1. TEM activity was decreased in Ninjurin1 KO bone marrow-derived macrophages and siNinj1 Raw264.7 cells. Consistent with this, GFP-tagged mNinj1-overexpressing Raw264.7 cells increased their TEM activity. Taken together, we have clarified the contribution of Ninjurin1 to leukocyte trafficking in vivo and delineated its direct functions to TEM, emphasizing Ninjurin1 as a beneficial therapeutic target against inflammatory diseases such as multiple sclerosis.  相似文献   

9.
The thymus plays an important role shaping the T cell repertoire in the periphery, partly, through the elimination of inflammatory auto-reactive cells. It has been shown that, during Plasmodium berghei infection, the thymus is rendered atrophic by the premature egress of CD4+CD8+ double-positive (DP) T cells to the periphery. To investigate whether autoimmune diseases are affected after Plasmodium berghei NK65 infection, we immunized C57BL/6 mice, which was previously infected with P.berghei NK65 and treated with chloroquine (CQ), with MOG35–55 peptide and the clinical course of Experimental Autoimmune Encephalomyelitis (EAE) was evaluated. Our results showed that NK65+CQ+EAE mice developed a more severe disease than control EAE mice. The same pattern of disease severity was observed in MOG35–55-immunized mice after adoptive transfer of P.berghei-elicited splenic DP-T cells. The higher frequency of IL-17+- and IFN-γ+-producing DP lymphocytes in the Central Nervous System of these mice suggests that immature lymphocytes contribute to disease worsening. To our knowledge, this is the first study to integrate the possible relationship between malaria and multiple sclerosis through the contribution of the thymus. Notwithstanding, further studies must be conducted to assert the relevance of malaria-induced thymic atrophy in the susceptibility and clinical course of other inflammatory autoimmune diseases.  相似文献   

10.
Interest in organoselenide chemistry and biochemistry has increased in the past three decades, mainly due to their chemical and biological activities. Here, we investigated the protective effect of the organic selenium compound diphenyl diselenide (PhSe)2 (5 μmol/kg), in a mouse model of methylmercury (MeHg)-induced brain toxicity. Our group has previously demonstrated that the oral and repeated administration (21 days) of MeHg (40 mg/L) induced MeHg brain accumulation at toxic concentrations, and a pattern of severe cortical and cerebellar biochemical and behavioral. In order to assess neurotoxicity, the neurochemical parameters, namely, mitochondrial complexes I, II, II–III and IV, glutathione peroxidase (GPx) and glutathione reductase (GR) activities, the content of thiobarbituric acid-reactive substances (TBA-RS), 8-hydroxy-2′-deoxyguanosine (8-OHdG), and brain-derived neurotrophic factor (BDNF), as well as, metal deposition were investigated in mouse cerebral cortex. Cortical neurotoxicity induced by brain MeHg deposition was characterized by the reduction of complexes I, II, and IV activities, reduction of GPx and increased GR activities, increased TBA-RS and 8-OHdG content, and reduced BDNF levels. The daily treatment with (PhSe)2 was able to counteract the inhibitory effect of MeHg on mitochondrial activities, the increased oxidative stress parameters, TBA-RS and 8-OHdG levels, and the reduction of BDNF content. The observed protective (PhSe)2 effect could be linked to its antioxidant properties and/or its ability to reduce MeHg deposition in brain, which was here histochemically corroborated. Altogether, these data indicate that (PhSe)2 could be consider as a neuroprotectant compound to be tested under neurotoxicity.  相似文献   

11.

Background

Experimental autoimmune encephalomyelitis (EAE) is used as an animal model for human multiple sclerosis (MS), which is an inflammatory demyelinating autoimmune disease of the central nervous system characterized by activation of Th1 and/or Th17 cells. Human autoimmune diseases can be either exacerbated or suppressed by infectious agents. Recent studies have shown that regulatory T cells play a crucial role in the escape mechanism of Plasmodium spp. both in humans and in experimental models. These cells suppress the Th1 response against the parasite and prevent its elimination. Regulatory T cells have been largely associated with protection or amelioration in several autoimmune diseases, mainly by their capacity to suppress proinflammatory response.

Methodology/Principal Findings

In this study, we verified that CD4+CD25+ regulatory T cells (T regs) generated during malaria infection (6 days after EAE induction) interfere with the evolution of EAE. We observed a positive correlation between the reduction of EAE clinical symptoms and an increase of parasitemia levels. Suppression of the disease was also accompanied by a decrease in the expression of IL-17 and IFN-γ and increases in the expression of IL-10 and TGF-β1 relative to EAE control mice. The adoptive transfer of CD4+CD25+ cells from P. chabaudi-infected mice reduced the clinical evolution of EAE, confirming the role of these T regs.

Conclusions/Significance

These data corroborate previous findings showing that infections interfere with the prevalence and evolution of autoimmune diseases by inducing regulatory T cells, which regulate EAE in an apparently non-specific manner.  相似文献   

12.
Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility.  相似文献   

13.
The active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), can suppress disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Calcium appears to be a critical component of 1,25(OH)2D3-mediated suppression of EAE, as complete disease prevention only occurs with a concomitant increase in serum calcium levels. Calcitonin (CT) is a peptide hormone released in response to acute increases in serum calcium, which led us to explore its importance in 1,25(OH)2D3-mediated suppression of EAE. Previously, we discovered that co-administration of pharmacological doses of CT enhanced the suppressive effect of 1,25(OH)2D3 on EAE, suggesting CT may play a role in 1,25(OH)2D3-mediated suppression of EAE. To determine the importance of CT in EAE we have utilized a mouse strain in which the gene encoding CT and its alternative splice product, calcitonin gene related peptide-α (CGRP), have been deleted. Deletion of the CT/CGRP gene had no effect on EAE progression. Furthermore, treatment with 1,25(OH)2D3 suppressed EAE in CT/CGRP knock-out mice equal to that in wild type mice. Therefore, we conclude that CT is not necessary for 1,25(OH)2D3-mediated suppression of EAE.  相似文献   

14.

Background

Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS). Minocycline, a potent inhibitor of matrix metalloproteinase (MMP)-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG) minocycline liposomes are effective in treating EAE.

Findings

Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs), we determined that PEG minocycline-liposome preparations stabilized with CaCl2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.

Conclusions

Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.  相似文献   

15.
Both F2-isoprostanes (8-iso-PGF), a well-known marker of oxidative stress, and thromboxanes A2 (TXA2) are involved in atherosclerosis through LDL oxidation and platelet activation. Different aspects of the pathology can be described by 8-iso-PGF and TXA2 so it is important to determine both their concentrations to monitor the disease progression and/or therapy effects. We developed a simple and sensitive method based on liquid chromatography-tandem mass spectrometry, using electrospray ionization in negative-ion mode, for the simultaneous measurement of the concentration of 8-iso-PGF and 11-dehydro thromboxane B2 (11-DH-TXB2), a TXA2 metabolite. This method was applied to analyze urine samples collected overnight from 15 atherosclerotic patients, with documented carotid artery sclerosis (CAS), and from 20 controls. The detection limit was 0.097 pg/μL for 8-iso-PGF and 0.375 pg/μL for 11-DH-TXB2, with a linear range of 0.78-25 pg/μL; the inter- and intraday imprecision was <5% for both metabolites. These analytes were higher in CAS (P < 0.005 vs controls) and were positively correlated in patients but not in controls, even after adjustment for age and gender (r = 0.60; P = 0.032). This highly sensitive, precise, and rapid method allows for the simultaneous determination of 8-iso-PGF and 11-DH-TXB2 in human urine samples in order to evaluate oxidative stress and platelet aggregation.  相似文献   

16.
Lipocalin-2 (LCN2) plays an important role in cellular processes as diverse as cell growth, migration/invasion, differentiation, and death/survival. Furthermore, recent studies indicate that LCN2 expression and secretion by glial cells are induced by inflammatory stimuli in the central nervous system. The present study was undertaken to examine the regulation of LCN2 expression in experimental autoimmune encephalomyelitis (EAE) and to determine the role of LCN2 in the disease process. LCN2 expression was found to be strongly increased in spinal cord and secondary lymphoid tissues after EAE induction. In spinal cords astrocytes and microglia were the major cell types expressing LCN2 and its receptor 24p3R, respectively, whereas in spleens, LCN2 and 24p3R were highly expressed in neutrophils and dendritic cells, respectively. Furthermore, disease severity, inflammatory infiltration, demyelination, glial activation, the expression of inflammatory mediators, and the proliferation of MOG-specific T cells were significantly attenuated in Lcn2-deficient mice as compared with wild-type animals. Myelin oligodendrocyte glycoprotein-specific T cells in culture exhibited an increased expression of Il17a, Ifng, Rorc, and Tbet after treatment with recombinant LCN2 protein. Moreover, LCN2-treated glial cells expressed higher levels of proinflammatory cytokines, chemokines, and MMP-9. Adoptive transfer and recombinant LCN2 protein injection experiments suggested that LCN2 expression in spinal cord and peripheral immune organs contributes to EAE development. Taken together, these results imply LCN2 is a critical mediator of autoimmune inflammation and disease development in EAE and suggest that LCN2 be regarded a potential therapeutic target in multiple sclerosis.  相似文献   

17.
Experimental autoimmune encephalomyelitis (EAE) is an animal model to study multiple sclerosis (MS). Considering the tolerogenic effects of active vitamin D, we evaluated the therapeutic effect of myelin oligodendrocyte glycoprotein (MOG) associated with active vitamin D in EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG emulsified with Complete Freund’s Adjuvant plus Mycobacterium tuberculosis. Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after immunization, mice were treated with 0,1μg of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15). MOG (150μg) was co-administered on days 3 and 11. The administration of 1,25(OH) 2D3 or MOG determined significant reduction in EAE incidence and in clinical scores. When MOG was associated with 1,25(OH) 2D3 the animals did not develop EAE. Spleen and central nervous system (CNS) cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in comparison to the EAE control group. In addition, this treatment inhibited dendritic cells maturation in the spleen and reduced inflammatory infiltration in the CNS. The association of MOG with 1,25(OH) 2D3 was able to control EAE development.  相似文献   

18.
Primary exposure of mice to gastrointestinal nematode infection with Heligmosomoides polygyrus reduces inflammation in an experimental model of multiple sclerosis. In this study, we aimed to evaluate the ability of H. polygyrus L4 larvae and adults infection to reduce the symptoms of ongoing experimental autoimmune encephalomyelitis (EAE) in female C57Bl/6 mice. EAE was induced by myelin oligodendrocyte glycoprotein MOGp35–55 and after 21 days mice were orally infected with 200 infective larvae (L3) of H. polygyrus. Reduction in EAE symptoms was observed from 2 days post infection and the symptoms were almost completely inhibited at 6 days post infection. This effect was associated with limited total protein content in the cerebrospinal fluid; CSF, and significant decreased pro-inflammatory IL-12p40 concentration and increased concentration of the regulatory cytokines IL-10, TGF-β and IL-6 in the CSF and in the serum. The reduction of EAE symptoms in the enteral phase was associated with higher IL-12p40 concentration in the CSF and very low concentrations of IL-17A and IL-2 in the serum. The fourth stage of gastrointestinal nematode can reverse systemic inflammation in animal models of multiple sclerosis by reducing IL-12 and promoting regulatory cytokines production. The mechanism induced by adult nematodes which sustained EAE inhibition can be provoked by regulatory mechanism connected with reduce IL-17A concentration.  相似文献   

19.
Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme required for prostaglandin E2 (PGE2) biosynthesis. In this study, we examined the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We induced EAE with myelin oligodendrocyte glycoprotein35–55 peptide in mPGES-1-deficient (mPGES-1−/−) and wild-type (WT) mice. First, we examined the histopathology in the early and late phases of EAE progression. Next, we measured the concentration of PGE2 in the spinal cord and investigated the expression of mPGES-1 using immunohistochemistry. In addition, we examined the progression of the severity of EAE using an EAE score to investigate a correlation between pathological features and paralysis. In this paper, we demonstrate that WT mice showed extensive inflammation and demyelination, whereas mPGES-1−/− mice exhibited significantly smaller and more localized changes in the perivascular area. The mPGES-1 protein was induced in vascular endothelial cells and microglia around inflammatory foci, and PGE2 production was increased in WT mice but not mPGES-1−/− mice. Furthermore, mPGES-1−/− mice showed a significant reduction in the maximum EAE score and improved locomotor activity. These results suggest that central PGE2 derived from non-neuronal mPGES-1 aggravates the disruption of the vessel structure, leading to the spread of inflammation and local demyelination in the spinal cord, which corresponds to the symptoms of EAE. The inhibition of mPGES-1 may be useful for the treatment of human MS.  相似文献   

20.
Organoselenium compounds, such as diphenyl diselenide (PhSe)2 and phenylselenium zinc chloride (PhSeZnCl), show protective activities related to their thiol peroxidase activity. However, depending on experimental conditions, organoselenium compounds can cause toxicity by oxidising thiol groups of proteins and induce the production of reactive oxygen species (ROS). Here, we analysed the toxicity of (PhSe)2 and PhSeZnCl in yeast Saccharomyces cerevisiae. Cell growth of S. cerevisiae after 1, 2, 3, 4, 6, and 16?h of treatment with 2, 4, 6, and 10?μM of (PhSe)2 was evaluated. For comparative purpose, PhSeZnCl was analysed only at 16?h of incubation at equivalent concentrations of selenium (i.e. 4, 8, 12, and 20?μM). ROS production (DCFH-DA), size, granularity, and cell membrane permeability (propidium iodide) were determined by flow cytometry. (PhSe)2 inhibited cell growth at 2?h (10?μM) of incubation, followed by increase in cell size. The increase of cell membrane permeability and granularity (10?μM) was observed after 3?h of incubation, however, ROS production occurs only at 16?h of incubation (10?μM) with (PhSe)2, indicating that ROS overproduction is a more likely consequence of (PhSe)2 toxicity and not its determinant. All tested parameters showed that only concentration of 20?μM induced toxicity in samples incubated with PhSeZnCl. In summary, the results suggest that (PhSe)2 toxicity in S. cerevisiae is time and concentration dependent, presenting more toxicity when compared with PhSeZnCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号