首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Are there universal molecular mechanisms associated with cell contact phenomena during metazoan ontogenesis? Comparison of adhesion systems in disparate model systems indicates the existence of unifying principles. Requirements for multicellularity are (a) the construction of three‐dimensional structures involving a crucial balance between adhesiveness and motility; and (b) the establishment of integration at molecular, cellular, tissue, and organismal levels of organization. Mechanisms for (i) cell–cell and cell–substrate adhesion, (if) cell movement, (Hi) cell‐cell communication, (iv) cellular responses, (v) regulation of these processes, and (vi) their integration with patterning, growth, and other developmental processes are all crucial to metazoan development, and must have been present for the emergence and radiation of Metazoa. The principal unifying themes of this review are the dynamics and regulation of cell contact phenomena. Our knowledge of the dynamic molecular mechanisms underlying cell contact phenomena remains fragmentary. Here we examine the molecular bases of cell contact phenomena using extant model developmental systems (representing a wide range of phyla) including the simplest i.e. sponges, and the eukaryotic protist Dictyostelium discoideum, the more complex Drosophila melanogaster, and vertebrate systems. We discuss cell contact phenomena in a broad developmental context. The molecular language of cell contact phenomena is complex; it involves a plethora of structurally and functionally diverse molecules, and diverse modes of intermolecular interactions mediated by protein and/or carbohydrate moieties. Reasons for this are presumably the necessity for a high degree of specificity of inter‐molecular interactions, the requirement for a multitude of different signals, and the apparent requirement for an increasingly large repertoire of cell contact molecules in more complex developmental systems, such as the developing vertebrate nervous system. However, comparison of molecular models for dynamic adhesion in sponges and in vertebrates indicates that, in spite of significant differences in the details of the way specific cell–cell adhesion is mediated, similar principles are involved in the mechanisms employed by members of disparate phyla. Universal requirements are likely to include (a) rapidly reversible intermolecular interactions; (b) low‐affinity intermolecular interactions with fast on–off rates; (c) the compounding of multiple intermolecular interactions; (d) associated regulatory signalling systems. The apparent widespread employment of molecular mechanisms involving cadherin‐like cell adhesion molecules suggests the fundamental importance of cadherin function during development, particularly in epithelial morphogenesis, cell sorting, and segregation of cells.  相似文献   

2.
Cairo CW  Golan DE 《Biopolymers》2008,89(5):409-419
Cell surface receptors mediate the exchange of information between cells and their environment. In the case of adhesion receptors, the spatial distribution and molecular associations of the receptors are critical to their function. Therefore, understanding the mechanisms regulating the distribution and binding associations of these molecules is necessary to understand their functional regulation. Experiments characterizing the lateral mobility of adhesion receptors have revealed a set of common mechanisms that control receptor function and thus cellular behavior. The T cell provides one of the most dynamic examples of cellular adhesion. An individual T cell makes innumerable intercellular contacts with antigen presenting cells, the vascular endothelium, and many other cell types. We review here the mechanisms that regulate T cell adhesion receptor lateral mobility as a window into the molecular regulation of these systems, and we present a general framework for understanding the principles and mechanisms that are likely to be common among these and other cellular adhesion systems. We suggest that receptor lateral mobility is regulated via four major mechanisms-reorganization, recruitment, dispersion, and anchoring-and we review specific examples of T cell adhesion receptor systems that utilize one or more of these mechanisms.  相似文献   

3.
The isolation and molecular analysis of highly purified cell populations from complex, heterogeneous tissues has been a challenge for many years. Spermatogenesis in the testis is a particularly difficult process to study given the unique multiple cellular associations within the seminiferous epithelium, making the isolation of specific cell types difficult. Laser-capture microdissection (LCM) is a recently developed technique that enables the isolation of individual cell populations from complex tissues. This technology has enhanced our ability to directly examine gene expression in enriched testicular cell populations by routine methods of gene expression analysis, such as real-time RT-PCR, differential display, and gene microarrays. The application of LCM has however introduced methodological hurdles that have not been encountered with more conventional molecular analyses of whole tissue. In particular, tissue handling (i.e. fixation, storage, and staining), consumables (e.g. slide choice), staining reagents (conventional H&E vs. fluorescence), extraction methods, and downstream applications have all required re-optimisation to facilitate differential gene expression analysis using the small amounts of material obtained using LCM. This review will discuss three critical issues that are essential for successful procurement of cells from testicular tissue sections; tissue morphology, capture success, and maintenance of molecular integrity. The importance of these issues will be discussed with specific reference to the two most commonly used LCM systems; the Arcturus PixCell IIe and PALM systems. The rat testis will be used as a model, and emphasis will be placed on issues of tissue handling, processing, and staining methods, including the application of fluorescence techniques to assist in the identification of cells of interest for the purposes of mRNA expression analysis.  相似文献   

4.
5.
6.
The plant cell cycle   总被引:4,自引:0,他引:4  
Molecular controls of the plant cell cycle must integrate environmental signals within developmental contexts. Recent advances highlight the fundamental conservation of underlying cell cycle mechanisms between animals and plants, overlaid by a rich molecular and regulatory diversity that is specific to plant systems. Here we review plant cell cycle regulators and their control.  相似文献   

7.
Valet G 《Cell proliferation》2005,38(4):171-174
A large amount of structural and functional information is obtained by molecular cell phenotype analysis of tissues, organs and organisms at the single cell level by image or flow cytometry in combination with bioinformatic knowledge extraction (cytomics) concerning nuclei acids, proteins and metabolites (cellular genomics, proteomics and metabolomics) as well as cell function parameters like intracellular pH, transmembrane potentials or ion gradients. In addition, differential molecular cell phenotypes between diseased and healthy cells provide molecular data patterns for (i) predictive medicine by cytomics or for (ii) drug discovery purposes using reverse engineering of the data patterns by biomedical cell systems biology. Molecular pathways can be explored in this way including the detection of suitable target molecules, without detailed a priori knowledge of specific disease mechanisms. This is useful during the analysis of complex diseases such as infections, allergies, rheumatoid diseases, diabetes or malignancies. The top-down approach reaching from single cell heterogeneity in cell systems and tissues down to the molecular level seems suitable for a human cytome project to systematically explore the molecular biocomplexity of human organisms. The analysis of already existing data from scientific studies or routine diagnostic procedures will be of immediate value in clinical medicine, for example as personalized therapy by cytomics.  相似文献   

8.
Summary Various aspects of somatic embryogenesis in carrot suspension cultures were reviewed on the basis of results obtained in our laboratory. We have established high-frequency and synchronous somatic embryogenesis systems needed for biochemical and molecular analysis. Using these systems, four phases of somatic embryogenesis were identified. The importance of expression of polarities in these phases, particularly from single cells to embryogenic cell clusters, in determining somatic embryogenesis, is emphasized. At the molecular level, genes expressed during somatic embryogenesis were described, and they were classified into three categories: (1) genes involved in cell division, (2) genes involved in organ formation and (3) genes specific for the process of somatic embryogenesis. From the results obtained, it is concluded that discrete developmental phases in carrot somatic embryogenesis are characterized by distinct biochemical and molecular events, but much remains to be understood.  相似文献   

9.
All molecular interactions that are relevant to cellular and molecular structures are electrical in nature but manifest in a rich variety of forms that each has its own range and influences on the net effect of how molecular species interact. This article outlines how electrical interactions between the protein and lipid membrane components underlie many of the activities of membrane function. Particular emphasis is placed on spatially localised behaviour in membranes involving modulation of protein activity and microdomain structure.The interactions between membrane lipids and membrane proteins together with their role within cell biology represent an enormous body of work. Broad conclusions are not easy given the complexities of the various systems and even consensus with model membrane systems containing two or three lipid types is difficult. By defining two types of broad lipid–protein interaction, respectively Type I as specific and Type II as more non-specific and focussing on the electrical interactions mostly in the extra-membrane regions it is possible to assemble broad rules or a consensus of the dominant features of the interplay between these two fundamentally important classes of membrane component. This article is part of a special issue entitled: Lipid–protein interactions.  相似文献   

10.
The study of muscle physiology has undergone many changes over the past 25 years and has moved from purely physiological studies to those intimately intertwined with molecular and cell biological questions. To ask these questions, it is necessary to be able to transfer genetic reagents to cells both in culture and, ultimately, in living animals. Over the past 10 years, a number of different chemical and physical approaches have been developed to transfect living skeletal, smooth, and cardiac muscle systems with varying success and efficiency. This review provides a survey of these methods and describes some more recent developments in the field of in vivo gene transfer to these various muscle types. Both gene delivery for overexpression of desired gene products and delivery of nucleic acids for downregulation of specific genes and their products are discussed to aid the physiologist, cell biologist, and molecular biologist in their studies on whole animal biology. electroporation; liposomes; plasmids; transfection; gene expression  相似文献   

11.
Studies in vitro have revealed a great deal about growth cone behaviors, especially responses to guidance molecules, both positive and negative, and the signaling systems mediating these responses. Little, however, is known about these events as they take place in vivo. With new imaging methods, growth cone behaviors can be chronicled in the complex settings of intact or semi-intact systems. With the retinal projection through the optic chiasm as a model, we examined the hypothesis previously drawn from static material that growth cone form is position-specific: growth cone form in fact reflects specific behaviors, including rate and tempo of extension, that are more or less prominent in different locales in which growth cones are situated. Other studies show that growth cones interact with cells along the pathway, both specialized nonneuronal cells and other neurons, some expressing known guidance molecules. The present challenge is to bridge dynamic imaging with electron microscopy and molecular localization, in order to link growth cone behaviors with cell and molecular interactions in the natural setting in which growth cones extend.  相似文献   

12.
Recent structural analyses of invertebrate nervous systems have supported hypotheses stating that specific developmental and cytological aspects of larval and adult brains are conserved among bilaterian animals. Opposing views argue that structural similarities in larval nervous systems may be the result of convergent evolution and that the developmental diversity of adult brains is more indicative of several independent origins. Here, I use various cytological probes, confocal microscopy, and reconstruction techniques to investigate the cellular diversity within the larval nervous systems of Glottidia pyramidata and Terebratalia transversa (Brachiopoda). Neuronal cell types are compared among the rhynchonelliform, linguliform, and craniiform brachiopods as well as the phoronids. Although the respective larval types of the previously mentioned systematic groups clearly diverge in the neuroarchitecture of their larval apical organs (and nervous systems in general), a ground plan is proposed based on shared, centrally‐located, peptidergic neuronal cell types that can be compared with similar cell types in other lophotrochozoan phyla (bryozoans and spiralians). Assessing hierarchal levels of homology within and among the nervous systems of morphologically disparate phyla is challenging in that many phyla share early developmental signals that induce the specification of the neural ectoderm, clouding our ability to discern divergent larval and juvenile brain structure. Solving these problems will require a combined effort involving both traditional and more recent cytological techniques with a diversity of molecular probes that will better map the neuronal complexity of diverse invertebrate nervous systems. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Caspases: potential targets for regulating cell death   总被引:12,自引:0,他引:12  
While in multicellular organisms all cells inexorably die, there are several different ways provided for the realization of cell death. One of them, apoptosis, represents a universal energy-dependent and tightly regulated physiologic process of cell death in both normal and pathologic tissues. The execution of apoptosis appears to be uniformly mediated through consecutive activation of the members of a caspase family. This review briefly summarizes current knowledge on the molecular mechanisms of caspase activation and the inhibitory components of caspase cascades. The suitability of caspases as a new potential therapeutic target is discussed next. Particular attention is focused on two broad categories of caspase-directed compounds: highly specific caspase inhibitors that distinctly block the progress of apoptosis and caspase activators that selectively induce cell death in a variety of in vitro and in vivo systems. These agents promise to be useful clinically, either alone or in combination with more conventional therapeutics.  相似文献   

14.
ABSTRACT

Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell.  相似文献   

15.
16.
Immortalization of precursor cells from the mammalian CNS   总被引:28,自引:0,他引:28  
K Frederiksen  P S Jat  N Valtz  D Levy  R McKay 《Neuron》1988,1(6):439-448
Recent studies show that the nervous system contains many molecularly distinct cell types. Clonal cell marking experiments demonstrate that different cell types in some areas of the CNS are products of a multipotential stem cell. The factors controlling the differentiation of vertebrate CNS precursor cells would be more accessible to molecular analysis if cell lines with precursor properties could be established. Here we show that cell lines expressing an antigenic marker specific for a major brain precursor cell population can be established from rat cerebellum. We demonstrate that cell lines express the precursor, neuronal or glial properties depending on the growth conditions. This work supports the view that brain precursor cells expressing the marker Rat 401 are multipotential and can differentiate into cells with either neuronal or glial properties. Cell lines capable of differentiation should be useful in defining the signaling systems generating the cell types of the brain.  相似文献   

17.
Gliomas are the most common type of primary brain tumour and are often fast growing with a poor prognosis for the patient. Their complex cellular composition, diffuse invasiveness and capacity to escape therapies has challenged researchers for decades and hampered progress towards an effective treatment. Recent molecular characterization of tumour cells combined with new insights into cellular diversification that occurs during development, and the modelling of these processes in transgenic animals have enabled a more detailed understanding of the events that underlie gliomagenesis. Combining this enhanced understanding of the relationship between neural stem cell biology and the cell lineage relationships of tumour cells with model systems offers new opportunities to develop specific and effective therapies.  相似文献   

18.
This paper describes the initial immunochemical characterization of specific macrophage-arming factor (SMAF). SMAF is an antigen-specific factor that is released by (sensitized) T lymphocytes after contact with the specific antigen. It renders macrophages specifically cytotoxic. The specificity is dependent on the tumor-mouse combination. In allogeneic systems the specificity is H-2-directed, whereas in the syngeneic systems the specificity is tumor-specific. SMAF has a molecular mass of 65-85 kDa (established by gel filtration). By affinity chromatography SMAF could not be adsorbed with anti-(kappa + lambda light chain) immunoglobulins or anti-IgG from SMAF-containing supernatants. SMAF could be adsorbed with the monoclonal antibody 14-30 (directed against specific T-cell factors), and could be eluted from columns containing the latter. Furthermore, SMAF could also be adsorbed with and eluted from affinity chromatography columns to which specific tumor cell membranes or KCl extracts of these tumor cell membranes were coupled. Other tumor cell membranes could not adsorb SMAF. Together these data show that SMAF is not an antibody but a T-cell factor with an antigen-specific recognition site.  相似文献   

19.
Cis-acting determinants of asymmetric, cytoplasmic RNA transport   总被引:1,自引:0,他引:1       下载免费PDF全文
Asymmetric subcellular distribution of RNA is used by many organisms to establish cell polarity, differences in cell fate, or to sequester protein activity. Accurate localization of RNA requires specific sequence and/or structural elements in the localized RNA, as well as proteins that recognize these elements and link the RNA to the appropriate molecular motors. Recent advances in biochemistry, molecular biology, and cell imaging have enabled the identification of many RNA localization elements, or "zipcodes," from a variety of systems. This review focuses on the mechanisms by which various zipcodes direct RNA transport and on the known sequence/structural requirements for their recognition by transport complexes. Computational and experimental methods for predicting and identifying zipcodes are also discussed.  相似文献   

20.
Embryonic development begins with cleavage of the fertilized egg. Cleavage comprises two major processes: cytokinesis and formation of a polarized epithelial cell layer. The focus of this review is comparison of the generation of membrane polarity during embryonic cleavage in three different developmental model systems. In mammalian embryos, as exemplified by analysis of the mouse, generation of distinct membrane domains is uncoupled from cleavage divisions and is initiated in a specific developmental phase, called compaction. In Xenopus laevis embryos, generation of polarized blastomeres occurs simultaneously with cytokinesis. The origin of specific membrane domains of X. laevis polar blastomeres, however, can be traced back to oogenesis. Finally, in Drosophila melanogaster, generation of polarized cells occurs at cellularization. The relevance of cell adhesion, cell junctions and cytocortical scaffolds will be discussed for each of the model systems. Despite enormous morphologic differences, the three models share many common features; in particular, many important molecular interactions are conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号