首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diurnal variations of nitrate reductase (NR) activity and stability have been studied in leaves of barley seedlings ( Hordeum vulgare L. cv. Herta) grown in an 8 h light/16 h darkness regime. Stability (decay) of NR was tested both in the extracts and in the plants. In the morning, when the plants were transferred to light, NR activity increased rapidly during the first hour and then remained constant. After the photoperiod, activity decreased rapidly during the first hour of darkness and then remained fairly constant during the rest of the dark period. The high NR activity during the photoperiod was associated with low NR stability both in the extracts and in the plants. On the other hand the low NR activity during the dark period was associated with high stability in the extracts and in the plants.  相似文献   

2.
Circadian rhythmicity of nitrate reductase activity in barley leaves   总被引:2,自引:0,他引:2  
Nitrate reductase (EC 1.6.6.1) activity showed circadian rhythmicity in the first leaf of 8–11 days old barley ( Hordeum vulgare L. cv. Herta) plants. Circadian rhythms were found using both the in vitro and in vivo method for testing the enzyme activity. When the light intensity was reduced from 65 to 20 W m−2, the amplitude was smaller and the oscillations were damped sooner. In continuous darkness nitrate reductase activity decreased in a two step process. Three different light qualities were tested which all gave the same results.  相似文献   

3.
The in vitro and various modifications of the in vivo assay for nitrate reductase have been compared in order to elucidate their usefulness in studies of diurnal variations of enzyme activity in barley leaves ( Hordeum vulgare L. cv. Herta). Generally, activity was low in the morning and increased rapidly during the first hours of the photoperiod. In the in vivo assay the leaf tissue was vacuum-infiltrated, whereafter either N2 was bubbled through the assay buffer (anaerobic assay), or no N2 was used (aerobic assay). Activity was 2–25 times higher in the anaerobic than in the aerobic assay. Anaerobiosis enhanced activity most during the dark period when the nitrate reductase level was low. Aerobic in vivo activity usually showed a more rapid decrease towards the end of the light period than did anaerobic activity. Addition of glucose and/or nitrate to the in vivo assay buffer usually stimulated activity more in the aerobic than in the anaerobic assay. In the morning, at the end of the dark period, these additives stimulated activity by 20–400% depending on growth and assay conditions. Later in the day stimulation was usually less, and even a slight inhibition was observed when only nitrate (0.1 M ) was added. The effect of these additives on the activity patterns determined was to dampen the oscillations. The additives were therefore not advantageous when testing diurnal variations. However, when the plants were grown under relatively poor light conditions it was necessary to add nitrate and glucose to the aerobic in vivo assay buffer since activity was otherwise too low to be measured. The in vitro assay gave about 5 times higher activity than the anaerobic in vivo assay. During the last part of the dark period in vivo activity (without glucose and KNO3 in the assay buffer) decreased while in vitro activity remained constant.  相似文献   

4.
The responses of nitrate reductase (NR) activity and levels of NR-mRNA to environmental nitrate and exogenous cytokinins are characterised in roots and shoots of barley ( Hordeum vulgare L., cv. Golf), using a chemostate-like culture system for controlling nitrate nutrition. Experiments were mainly performed with split root cultures where nitrate-N was supplied at a constant relative addition rate of 0.09 day−1, and distributed between the subroots in a ratio of 20%:80%. The subroot NR-mRNA level and NR activity, as well as the endogenous level of zeatin riboside (ZR), increased when the local nitrate supply to one of the subroots was increased 4-fold by reversing the nitrate addition ratio (i.e. from 20%:80% to 80%:20%). Also shoot levels of ZR, NR-mRNA and NR activity increased in response to this treatment, even though the total nitrate supply remained unaltered. External supply of ZR at 0.1 μ M caused an approximately 3-fold increase in root ZR levels within 6 h. which is comparable to the nitrate-induced increase in root ZR. External application of ZR. zeatin. isopentenyl adenine or isopentenyl adenosine at 0.1 μ M caused from insignificant to 25% increases in NR-mRNA and activity in roots and up to 100% stimulation in shoots, whereas adenine or adenosine had no effect. No synergistic effects of perturbed nitrate supply and cytokinin application were detected in either roots or shoots. The translocation of nitrate from the root to the shoot was unaffected by application of ZR or switching the nitrate distribution ratio between subroots. The data give arguments for a physiological role of cytokinins in the response of root and shoot NR to environmental nitrate availability. The nature and limitations of the physiological role of cytokinins are discussed.  相似文献   

5.
Regulation of nitrate and nitrite reduction in barley leaves   总被引:1,自引:0,他引:1  
Reduction of nitrate and accumulation of nitrite were studied in barley (Hordeum vulgare L. cv. Gars Clipper ex Napier) leaf sections in the dark and in the light, under aerobic (air and mixtures of O2 and N2) or anaerobic (N2) conditions. Oxygen prevented nitrite accumulation but had no effect on accumulated or infiltrated nitrite. Most of the nitrite accumulated under dark-anaerobic conditions was in the "cytoplasmic" (the cell section between the plasma lemma and the tonoplast) fraction of the tissue. Reduction of nitrate was stimulated by 2, 4-dinitrophenol in tissue under dark-air and by 3-(3', 4'-dichlorophenyl)-l, l-dimethyl urea (DCMU) and carbonyl cyanide m -chlorophenylhydrazone (CCCP) in tissue under all environmental conditions studied. Nitrite accumulated in the light in DCMU-treated tissue under N2 or under aerobic conditions in the presence of CCCP. On its own, CCCP did not promote accumulation of nitrite in leaf sections under light-air. A model for the reduction of nitrate and nitrite is proposed.  相似文献   

6.
Nitrate reductase (NR, NADH:nitrate oxidoreductase, EC 1.6.6.1) activity from leaves of barley (Hordeum vulgare L. cv. Hassan) is rapidly and reversibly inactivated during a light-dark transition. A hyperbolic correlation exists between in vivo rates of CO2 fixation and extractable NR activity from the leaves, and feeding hexose and hexosephosphate protects against the dark-inactivation; indicating that carbon-assimilation products are regulatory factors of NR activity mediating both the light-dark modulation and its dependence upon CO2 fixation. To corroborate this point, the effect of inhibiting CO2 fixation on NR activity in barley leaves has been analyzed. Glycolaldehyde (50 mM), an inhibitor of the regeneration phase of the Calvin cycle, was fed through the transpiration stream and inhibited CO2 fixation by more than 80% at the same time as it produced a parallel inhibition of NR light-activation. Feeding mannose (10 mM), inhibited CO2 fixation by 35% but did not affect NR activity in illuminated leaves and completely protected against dark-inactivation. Interestingly, feeding inorganic phosphate, Pi, (10 mM) alone or together with mannose also protected NR activity against dark-inactivation. The mannose effect could be interpreted in terms of accumulation of mannose 6-phosphate, an analog of glucose 6-phosphate. After feeding either 10 mM glucose or dihydroxyacetone phosphate, NR activity from darkened leaves was significantly higher than that of darkened control leaves fed with water (P< 0.03). These treatments, as well as Pi feeding, also produce some increase in extractable NR activity from illuminated leaves. The results indicate that factors increasing the levels of hexose- and triose-phosphate have positive effects on NR activation, supporting the contention that the NR activation system is sensitive to carbon-assimilation products.  相似文献   

7.
Diurnal variations of in vitro and in vivo (intact tissue assay) nitrate reductase (EC 1.6.6.1) activity and stability were examined in leaves of wheat ( Triticum aestivum L. cv. Runar), oat ( Avcna saliva L. cv. Mustang) and barley ( Hordeum vulgure L. cv. Agneta and cv. Gunillu). Nitrate reductase activity was generally higher for wheat than for oat and barley. However, the diurnal variations of nitrate reductase activity and stability were principally the same for all species, e.g. the high activity during the photoperiod was associated with low stability. All species showed a rapid (30-60 min) increase in the in vitro and in vivo activity when the light was switched on. When light was switched off the in vitro activity decreased rapidly whereas decrease in in vivo activity was slower. These experiments support the hypothesis that an activation/ deactivation mechanism is involved in the regulation of diurnal variations in nitrate reductase activity. Red light enhanced nitrate reductase activity in etiolated wheat and barley leaves. In green leaves, however, the daily increase in nitrate reductase activity was not induced by a brief red light treatment. Indications of different regulation mechanisms for the diurnal variations of nitrate reductase activity among the cereals were not found.  相似文献   

8.
9.
Diurnal variations of in vitro activity of 5 enzymes of nitrogen metabolism were studied. Barley ( Hordeum vulgare L. cv. Herta) seedlings were grown in 8 h short days, in daylight or under fluorescent lamps. During, the photoperiod nitrite reductase (EC 1.7.7.1) increased by an average of 18% in daylight and 10% under fluorescent lamps. Glutamine synthetase (EC 6.3.1.2) activity increased by 14 and 10%, respectively. The increase in enzyme activity reflected the overall increase in soluble proteins which was 8% in daylight and 3% under fluorescent lamps. Alanine aminotransferase (EC 2.6.1.2) increased by 82% in daylight and 37% under fluorescent lamps. Desalting of the extracts did not alter the enzyme activity and thus supported the assumption that changes in extractable enzyme activity are due to changes in the amount of (active) enzyme protein. Glutamate synthase (EC 1.4.7.1) activity did not show regular diurnal variations, and aspartate aminotransferase (EC 2.6.1.1) activity was almost constant.  相似文献   

10.
NADH-nitrate reductase (EC 1.6.6.1) was purified 800-fold from roots of two-row barley ( Hordeum vulgare L. cv. Daisen-gold) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on TSK-gel (G3000SW). The specific activity of the purified enzyme was 6.2 μmol nitrite produced (mg protein)−1 min−1 at 30°C.
Besides the reduction of nitrate by NADH, the root enzyme, like leaf nitrate reductase, also catalyzed the partial activities NADH-cytochrome c reductase, NADH-ferricyanide reductase, reduced methyl viologen nitrate reductase and FMNH2-nitrate reductase. Its molecular weight was estimated to be about 200 kDa, which is somewhat smaller than that for the leaf enzyme. A comparison of root and leaf nitrate reductases shows physiologically similar or identical properties with respect to pH optimum, requirements of electron donor, acceptor, and FAD, apparent Km for nitrate, NADH and FAD, pH tolerance, thermal stability and response to inorganic orthophosphate. Phosphate activated root nitrate reductase at high concentration of nitrate, but was inhibitory at low concentrations, resulting in increases in apparent Km for nitrate as well as Vmax whereas it did not alter the Km for NADH.  相似文献   

11.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

12.
13.
The relation between nitrate reductase (NR; EC 1.6.6.1) activity, activation state and NR protein in leaves of barley (Hordeum vulgare L.) seedlings was investigated. Maximum NR activity (NRAmax) and NR protein content (Western blotting) were modified by growing plants hydroponically at low (0.3 mM) or high (10 mM) nitrate supply. In addition, plants were kept under short-day (8 h light/16 h dark) or long-day (16 h light/8 h dark) conditions in order to manipulate the concentration of nitrate stored in the leaves during the dark phase, and the concentrations of sugars and amino acids accumulated during the light phase, which are potential signalling compounds. Plants were also grown under phosphate deficiency in order to modify their glucose-6-phosphate content. In high-nitrate/long-day conditions, NRAmax and NR protein were almost constant during the whole light period. Low-nitrate/long-day plants had only about 30% of the NRAmax and NR protein of high-nitrate plants. In low-nitrate/long-day plants, NRAmax and NR protein decreased strongly during the second half of the light phase. The decrease was preceded by a strong decrease in the leaf nitrate content. Short daylength generally led to higher nitrate concentrations in leaves. Under short-day/low-nitrate conditions, NRAmax was slightly higher than under long-day conditions and remained almost constant during the day. This correlated with maintenance of higher nitrate concentrations during the short light period. The NR activation state in the light was very similar in high-nitrate and low-nitrate plants, but dark inactivation was twice as high in the high-nitrate plants. Thus, the low NRAmax in low-nitrate/long-day plants was slightly compensated by a higher activation state of NR. Such a partial compensation of a low NRmax by a higher dark activation state was not observed with phosphate-depleted plants. Total leaf concentrations of sugars, of glutamine and glutamate and of glucose-6-phosphate did not correlate with the NR activation state nor with NRAmax. Received: 24 March 1999 / Accepted: 31 May 1999  相似文献   

14.
The distribution of ubiquitin protein in meristematic mesophyll cells of barley (Hordeum vulgare L.) leaves was investigated by using immunofluorescence microscopy. Simultaneous observation of nuclei was achieved byDAPI (4 6-diamidino-2-phenylindol-dihydrochloride) staining. A strong correlation between the chromatin organisation and the ubiquitin distribution could be observed. Interphase nuclei revealed an intense content of ubiquitin and accumulation of ubiquitin at the nuclear envelope, whereas condensed chromosomes of dividing cells excluded any ubiquitin appearance. During cell division, the aggregation of ubiquitin protein was detected in the area of the mitotic spindle in anaphase as well as the area of the cell plate in the late telophase.  相似文献   

15.
The pattern and sequence of cellular degradation during the course of leaf senescence remains obscure and the nature of the trigger that induces cell senescence is unknown. In order to probe the pre-mortem phase of senescence temporal changes in cell ultrastucture were studied in aging leaves of light-grown achlorophyllous Hordeum vulgare L. cv. Dyan mutant seedlings. Electron microscope examination of the ultrastructure of mesophyll cell plastids revealed the absence of ribosomes and a highly disorganized prolamellar body. Both the number and size of plastoglobuli increased with aging and this change coincided with depletion of starch grains and dilation of lamellar membranes. Aging of mesophyll cells occurred coincident with a decline in ribosome content of the cytoplasm and loss of matrix granularity. Loss of ribosomes associated with the outer nuclear envelope membrane and a reduction in chromatin were also apparent. Only after 10 days was there evidence of loss of internal membrane integrity and swelling of mitochondrial cristae. Compartmentation was thus maintained during the aging process with membrane dissolution occurring late in senescence. These results suggest that an inability to produce chlorophyll and carotenoids and form thylakoid stacks due to the absence of plastid ribosomes, contributes to the rapid onset of senescence in light-grown achlorophyllous seedlings. Furthermore, disruption of chloroplast ribosome synthesis/assembly may constitute part of the plastid signal involved in triggering cell senescence.  相似文献   

16.
Chloroplasts were isolated from senescent leaf segments of barley ( Hordeum vulgare L. var. Mozoncillo) and assayed for protein synthesis. Protein synthesis activity of the chloroplasts greatly increased after 10–20 h of incubation of leaf segments in the dark in spite of an intense degradation of chloroplast rRNA. The rise in the activity of protein synthesis was more pronounced when kinetin was present in the incubation medium. However, as deduced from SDS-polyacrylamide gel electrophoresis of the products, different proteins were synthesized under the two conditions of incubation of the leaf segments. The activity of protein synthesis of the chloroplasts decreased during the first hours of incubation of the leaf segments in the light.
Cutting and incubation in the dark of the leaf segments enhanced the synthesis of a few proteins also formed by chloroplasts in attached senescing leaves. Hormone and senescence treatments changed the type and the rate of the protein synthesized by chloroplasts, which suggests that hormones may control senescence through a modulation of the protein synthesized by the chloroplasts.  相似文献   

17.
The effect of exogenous NH4+ on the induction of nitrate reductase activity (NRA; EC 1.6.6.1) and nitrite reductase activity (NiRA; EC 1.7.7.1) in roots of 8-day-old intact barley (Hordeum vulgare L.) seedlings was studied. Enzyme activities were induced with 0.1, 1 or 10 mM NO3+ in the presence of 0, 1 or 10 mM NH4+, Exogenous NH4+ partially inhibited the induction of NRA when roots were exposed to 0.1 mM, but not to 1 or 10 mM NO3+, In contrast, the induction of NiRA was inhibited by NH4+ at all NO3+ levels. Maximum inhibition of the enzyme activities occurred at 1.0 mM NH4+ Pre-treatment with NH4+ had no effect on the subsequent induction of NRA in the absence of additional NH4+ whereas the induction of NiRA in NH4+-pretreated roots was inhibited in the absence of NH4+ At 10 mM NO3+ L-methionine sulfoximine stimulated the induction of NRA whether or not exogenous NH4+ was present. In contrast, the induction of NiRA was inhibited by L-methionine sulfoximine irrespective of NH4+ supply. During the postinduction phase, exogenous NH4+ decreased NRA in roots supplied with 0.1 mM but not with 1mM NH3+ whereas, NiRA was unaffected by NH4+ at either substrate concentration. The results indicate that exogenous NH4+ regulates the induction of NRA in roots by limiting the availability of NO3+. Conversely, it has a direct effect, independent of the availability of NO3+, on the induction of NiRA. The lack of an NH4+ effect on NiRA during the postinduction phase is apparently due to a slower turnover rate of that enzyme.  相似文献   

18.
Control of nitrate reductase by circadian and diurnal rhythms in tomato   总被引:1,自引:0,他引:1  
Tucker DE  Allen DJ  Ort DR 《Planta》2004,219(2):277-285
  相似文献   

19.
We examined changes in the protein composition of cytoplasmic ribosomes in etiolated barley leaves following illumination. Cytoplasmic ribosomes were isolated from greening barley leaves by sucrose density gradient centrifugation, and were analyzed by radical-free highly reducing polyacrylamide gel electrophoresis (RFHR-PAGE). Eighty-nine proteins were resolved from the ribosomal fraction; among them, 8 proteins changed their copy numbers depending on the stage of greening. We designated these as phase dependent ribosomal proteins (PD1–PD8). Two of the proteins (PD1 and 5) present in the ribosomes of etiolated leaves showed a decrease in level during greening. In contrast, the levels of 6 ribosomal proteins (PD2, 3, 4, 6, 7 and 8) increased as greening proceeded. N-terminal amino acid sequence of PD8 showed high homology to rat ribosomal protein L34. The ribosomal proteins that appeared after illumination were not found in any fraction of the etiolated leaves, suggesting that they were synthesized after the onset of illumination. Copy numbers of other ribosomal proteins did not change during greening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号