首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparan sulphate is a potent inhibitor of DNA synthesis in vitro   总被引:4,自引:0,他引:4  
The nature and the role of eIF-2 phosphoprotein phosphatase in rabbit reticulocyte lysates have been examined. The eIF-2 phosphoprotein phosphatase is inhibited by a variety of divalent metal ions (Cd++>Ag++> Cu++>Pb++>Zn++>Co++>Sr++>Mo++) in lysates in situ. In addition, PPi, EDTA and NaF inhibit this enzyme. The eIF-2 phosphoprotein phosphatase is also inhibited by NaHSO3 and Na2S2O5. Na2S2O5 is, however, more effective. Na2S2O5 has been found to be a potent inhibitor of protein synthesis in lysates. This inhibition is associated with the phosphorylation of the 38,000-dalton subunit of initiation factor eIF-2. eIF-2 overcomes this inhibition. These findings suggest that under optimum conditions of protein synthesis the phosphorylation and dephosphorylation of eIF-2 are in a dynamic state of equilibrium in which dephosphorylation is favored. The inhibition of eIF-2 phosphoprotein phosphatase by Na2S2O5 shifts this equilibrium in favor of eIF-2 phosphorylation, consequently, protein synthesis is inhibited. The sulfhydryl nature of eIF-2 phosphoprotein phosphatase has been established.  相似文献   

2.
Aeropyrum pernix is the first strictly aerobic hyperthermophile known to grow heterotrophically at neutral pH and at temperatures up to 100°C. Using a simple and sensitive frit-fast atom bombardment liquid chromatography/mass spectrometry quinone analysis method, we analyzed the quinones in A. pernix. This organism contained demethylmenaquinone analogs (DMK-6(Hn)) and methionaquinone analogs (MTK-6(Hn)) when it was grown under vigorous shaking in the presence of air. The quinones were partially or fully saturated with six isoprenyl units. Although DMK and MTK are the quinones found in eubacteria, this is the first report to demonstrate the simultaneous occurrence of DMK and MTK in archaea. The effect of Na2S2O3 on the quinone composition was studied at concentrations of 0, 0.1 and 0.5% under aerobic growth conditions with shaking. The total quinone content was highest (83.4 μg g−1 dry cell weight) at 0.1% Na2S2O3. In the absence of Na2S2O3, only DMK-6 analogs were detected. While DMK analogs such as DMK-6(H12), DMK-6(H10) and DMK-6(H8) were the major quinones at 0.1% Na2S2O3, MTK analogs such as MTK-6(H12) and MTK-6(H10) were also detected. When the Na2S2O3 concentration was increased to 0.5%, both DMK-6(H8) and MTK-6(H10) disappeared, while MTK-6(H12) increased to approximately 20% of the total quinone content. When A. pernix was grown under oxygen limitation in a tightly closed bottle without gas phase, MK-6(H10) appeared.  相似文献   

3.
Exploring new structure prototypes and phases by material design, especially anode materials, is essential to develop high‐performance Na‐ion batteries. This study proposes a new anode, Na2Cu2.09O0.50S2, with a 1D crystal structure and outstanding Na storage performance. In view of the crystal structure of Na2Cu2.09O0.50S2, [Cu4S4] chains act as electrically conducting units enabling conductivity as high as 0.5 S cm?1. The residual Na4[CuO] chains act as ionically conducting units forming rich channels for the fast conduction of Na ions as well as maintaining the structural stability even after Na ion extraction. Additional ball milling on the as‐prepared Na2Cu2.09O0.50S2 significantly decreases its grain size, achieving a capacity of 588 mA h g?1 with a high initial Coulombic efficiency of 93% at 0.2 A g?1. Moreover, the Na2Cu2.09O0.50S2 anode demonstrates outstanding rate capability (408 mA h g?1 at 2 A g?1) and extending cyclic performance (82% of capacity retention after 400 cycles). The general structural design idea based on functional units may offer a new avenue to new electrode materials.  相似文献   

4.
Ca2+-ATPase of human erythrocyte membranes which are prepared from freshly drawn human blood can be activated by the calmodulin present in the hemolysate to 1.5-times the basal level. However, when the membranes are prepared from blood stored for 5–14 days the activation by calmodulin reaches 2.5-times the basal level. An enhanced reactivity to calmodulin of similar magnitude was produced by brief exposure of fresh erythrocytes to 25 mM Na2S2O5 prior to isolation of the membranes. Reincubation of the activated cells in a disulfite-free medium restored the membrane-bound Ca2+-ATPase to a state of normal reactivity to calmodulin. It is hypothesized that these results are related to the level of cytoplasmic Ca2+ which is partly controlled by complex formation with 2,3-diphosphoglycerate, the concentration of which is diminished when its specific phosphatase is activated by Na2S2O5.  相似文献   

5.
Effect of long term soil salinity (control-S0 and three levels S1 to S3) was studied in two maize (Zea mays L.) genotypes, PEHM 3 (comparatively tolerant) and Navjot (susceptible) at vegetative and anthesis stages during summer-rainy season. Salinity stress decreased relative water content (RWC), chlorophyll (Chl) and carotenoid (Car) contents, membrane stability index (MSI), potassium and calcium contents, and increased the contents of superoxide radical (O2 ·−), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), proline, glycinebetaine, total soluble sugars, and sodium, and Na+/K+ and Na+/Ca2+ ratios in both the genotypes. Contents of zinc, copper, manganese and iron increased up to S2. Though under S0 PEHM 3 had higher content of all the metals, Navjot recorded higher content of Zn at all salinity levels and contents of all metal ions at S2 and S3. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) increased upto S2 in both the genotypes, and upto S3 in PEHM 3 at the two stages. Salinity induced decrease in RWC, Chl, Car, MSI, K+ and Ca2+ was significantly greater in Navjot, which also recorded higher Na+ content and Na+/K+ and Na+/Ca2+ ratios than PEHM-3. PEHM-3 recorded higher contents of proline, glycine-betaine, total soluble sugars, K+, Ca2+, activity of SOD, APX, CAT, GR, and comparatively lower O2 ·−, H2O2 and TBARS contents compared to Navjot.  相似文献   

6.
The effects of ambient O2 partial pressure and CO2 partial pressure on the intensity of rainbow trout (Oncorhynchus mykiss) red blood cell -adrenergic Na+/H+ exchange were investigated. This was accomplished in vitro by continuously monitoring whole blood extracellular pH, partial pressures of O2 and CO2 and by measuring red blood cell water content and Na+ concentration before and 30 min after the addition of a catecholamine mixture (final nominal concentrations: 250 nmol·l-1 adrenaline and 20 nmol·l-1 noradrenaline). The experiments were performed under six different initial conditions combining two ambient partial pressures of CO2 (1.50 and 6.75 torr) and three ambient partial pressures of O2 (15, 30 and 150 torr). The activation of red blood cell Na+/H+ exchange (as indicated by marked reductions of whole blood pH) was followed by transient reductions in blood partial pressures of CO2 and O2 (2 min) resulting from the shift of the CO2/HCO3 - equilibrium within the cell and the subsequent binding of O2 to the haemoglobin. The initial reduction in blood CO2 partial pressure was followed by a rise reflecting the titration of plasma HCO3 - by extruded H+. At low partial pressure of CO2 (1.50 torr) there was a pronounced stimulatory effect of hypoxia on the initial intensity of the extracellular acidification (5 min), whereas at high CO2 partial pressure (6.75 torr) hypoxia actually lowered the extent of the initial acidification. In all cases, Na+/H+ exchange activation was accompanied by increases in cell water content and red blood cell Na+ levles when measured 30 min after addition of catecholamines. Both hypercapnia and hypoxia increased the magnitude of these changes although the largest changes in cell water content and Na+ levels were observed under hypercapnic conditions. Thus, the long-term activity (as determined by measuring cell water and Na+ levels) of the Na+/H+ exchanger was enhanced both by hypercapnia and hypoxia regardless of the initial CO2 partial pressure. The initial activity (5 min), on the other hand, although stimulated by hypercapnia was influenced by hypoxia in opposing directions depending upon the initial CO2 partial pressure of the blood.Abbreviations RBC red blood cell(s) - Hb haemoglobin - pHe extracellular pH - P bCO2 blood partial pressure of CO2 - P bO2 blood partial pressure of O2  相似文献   

7.
The influence of supplemented thiosulfate (S2O3 2−) as well as a complex of either Ag+ or Cu2+ with S2O3 2− in the culture medium on proliferating root cultures of tomato (Solanum lycopersicum) was investigated. The presence of 10–300 μM sodium thiosulfate (Na2S2O3) in half-strength Murashige and Skoog (MS) basal salt medium promoted root elongation and proliferation of lateral roots. Growth was enhanced by 1–2 μM AgNO3, but was completely arrested at 5 μM AgNO3; moreover, growth inhibition was elicited by dissolved silver (Ag+) and by silver in silver precipitate particles. Root elongation was also inhibited by 50 μM CuSO4 supplemented to the basal medium. Roots subjected to either AgNO3 or CuSO4 growth inhibiting treatments were unable to recover following transfer to medium lacking either Ag+ or Cu2+. When the basal medium was supplemented with either silver or copper in the form of silver thiosulfate complex or copper thiosulfate complex, root cultures continued to elongate and proliferate, thus either completely alleviating or diminishing the inhibitory effects of Ag+ and Cu2+, respectively. It was concluded that tomato roots sensed and responded to S2O3 2−, hence root proliferation could be promoted by adding Na2S2O3 to the medium. Moreover, a complex of Ag+ with S2O3 2− detoxified dissolved Ag+ and prevented the generation of toxic silver particle precipitates. Consequently, silver thiosulfate was superior to AgNO3 in enhancing root culture. Finally, a complex of Cu2+ with S2O3 2− ligand reduced toxicity of Cu2+ to root cultures of tomato.  相似文献   

8.
The capability of Phascolosoma arcuatum to detoxify sulfide in anaerobic conditions was examined. Sulfane sulfur, which underwent cold cyanolysis, was the major excretory end product of sulfide detoxification during anoxia. Thiosulfate was not excreted into the external medium. Instead, it was absorbed by P. arcuatum and its absorption was stimulated by the presence of sodium sulfide (Na2S) in the incubation medium. The effective formation and excretion of sulfane sulfur by P.␣arcuatum required the presence of both Na2S and sodium thiosulfate (Na2S2O3). Results obtained indicate that rhodanese might be involved in sulfide detoxification in this sipunculid. Rhodanese could act as a catalyst in the transfer of sulfur atoms from thiosulfate to HS. The body wall and the introvert were the main sites of sulfide detoxification. However, it is unlikely that epibiotic bacteria associated with the outside surface of the worm were involved in the detoxification process. A time-course study on the contents of thiosulfate and sulfane sulfur in the body wall of P. arcuatum incubated anaerobically in the presence of Na2S + Na2S2O3 verified that thiosulfate absorbed was utilized to detoxify sulfide to sulfane sulfur. Accepted: 24 October 1996  相似文献   

9.
A remediation process for heavy metal polluted sediment has previously been developed in which the heavy metals are removed from the sediment by solid‐bed bioleaching using elemental sulfur (S0): the added S0 is oxidized by the indigenous microbes to sulfuric acid that dissolves the heavy metals which are finally extracted by percolating water. In this process, the temperature is a factor crucially affecting the rate of S0 oxidation and metal solubilization. Here, the effect of temperature on the kinetics of S0 oxidation has been studied: oxidized Weiße Elster River sediment (dredged near Leipzig, Germany) was mixed with 2 % S0, suspended in water and then leached at various temperatures. The higher the temperature was, the faster the S0 oxidized, and the more rapid the pH decreased. But temperatures above 35 °C slowed down S0 oxidation, and temperatures above 45 °C let the process – after a short period of acidification to pH 4.5 – stagnate. The latter may be explained by the presence of both neutrophilic to less acidophilic thermotolerant bacteria and acidophilic thermosensitive bacteria. Within 42 days, nearly complete S0 oxidation and maximum heavy metal solubilization only occurred at 30 to 45 °C. The measured pH(t) courses were used to model the rate of S0 oxidation depending on the temperature using an extended Arrhenius equation. Since molecular oxygen is another factor highly influencing the activity of S0‐oxidizing bacteria, the effect of dissolved O2 (controlled by the O2 content in the gas supplied) on S0 oxidation was studied in suspension: the indigenous S0‐oxidizing bacteria reacted quite tolerant to low O2 concentrations; the rate of S0 oxidation – measured as the specific O2 consumption – was not affected until the O2 content of the suspension was below 0.05 mg/L, i.e., the S0‐oxidizing bacteria showed a high affinity to O2 with a half‐saturation constant of about 0.01 mg/L. Stoichiometric coefficients describing the relationship between the mass of S0, O2 and CO2 consumed are scarcely available. The growth of S0‐oxidizing, obligate aerobic, autotrophic bacteria was, therefore, stoichiometrically balanced (by using a yield coefficient of YX/S = 0.146 g cells/g S0, calculated with data from the literature): 24.14 S0 + 29.21 O2 + 27.14 H2O + 5 CO2 + NO3→ C5H7O2N + 24.14 SO42– + 47.28 H+, which resulted in Y = 1.21 g O2/g S0 and Y = 0.28 g CO2/g S0.  相似文献   

10.
11.
12.
Mucosal uptake of75Se-labeled selenate and selenite across the brush border was investigated in sheep and rat small intestine, using 3-min mucosal exposures. Uptake of selenate and selenite occurred faster in rat than in sheep small intestine. With the exception of sheep duodenum, mucosal selenate uptake was Na+-dependent in sheep and rat small intestine. Mucosal uptake of selenite across the brush border was Na+-dependent only in sheep midjejunum, whereas it was Na+-independent in sheep duodenum and ileum and the rat whole small intestine. Various anions inhibited selenate transport in the presence of Na+ in sheep midjejunum in the order S2O2 2- = CrO4 2- > MoO4 2- and in rat ileum in the order CrO4 2- = S2O3 2- > SC4 2- > MoO4 2-. Thiosulfate also inhibited mucosal selenite uptake in the presence of Na+ in sheep midjejunum. Preincubation of rat ileum with glutathione (GSH) enhanced mucosal selenite uptake, whereas selenate uptake remained unaffected. These results indicate that selenate transport across the brush border membrane is energized in part by the Na+-gradient. Moreover, the Na+-dependent transport mechanism for the Se salts apparently has an affinity for other anions (S2O3 2-, SO4 2-, CrO4 2-, MOo4 2-). The findings further indicate that intracellular GSH plays a role in the absorption of selenite, probably by an increase of intracellular selenite metabolism. The Na+-independent mucosal uptake of selenate and selenite probably represents diffusion.  相似文献   

13.
Accurate quantification of different soil organic carbon (SOC) fractions is needed to understand their relative importance in the global C cycle. Among the chemical methods of SOC fractionation, oxidative degradation is considered more promising because of its ability to mimic the natural microbial oxidative processes in soil. This study focuses on detailed understanding of changes in structural chemistry and isotopic signatures of SOC upon different oxidative treatments for assessing the ability of these chemicals to selectively isolate a refractory fraction of SOC. Replicated sampling (to ~1 m depth) of pedons classified as Typic Fragiudalf was conducted under four land uses (woodlot, grassland, no-till and conventional-till continuous corn [Zea mays L.]) at Wooster, OH. Soil samples (<2 mm) were treated with three oxidizing agents (hydrogen peroxide (H2O2), disodium peroxodisulfate (Na2S2O8) and sodium hypochlorite (NaOCl)). Oxidation resistant residues and the bulk soil from A1/Ap1 horizons of each land use were further analyzed by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and accelerator mass spectrometry to determine structural chemistry and 14C activity, respectively. Results indicated that, oxidation with NaOCl removed significantly less SOC compared to Na2S2O8 and H2O2. The NMR spectra revealed that NaOCl oxidation preferentially removed lignin-derived compounds at 56 ppm and at 110–160 ppm. On the other hand, the SOC resistant to Na2S2O8 and H2O2 oxidation were enriched with alkyl C groups, which dominate in recalcitrant macromolecules. This finding was corroborated by the 14C activity of residual material, which ranged from ?542 to ?259‰ for Na2S2O8 resistant SOC and ?475 to ?182‰ for H2O2 resistant SOC as compared to relatively greater 14C activity of NaOCl resistant residues (?47 to 61‰). Additionally, H2O2 treatment on soils after light fraction removal was more effective in isolating the oldest (14C activity of ?725 to ?469‰) SOC fraction. The Δ14C signature of SOC removed by different oxidizing agents, calculated by mass balance, was more or less similar irrespective of the difference in labile SOC removal efficiency. This suggests that SOC isolated by many fractionation methods is still a mixture of much younger and older material and therefore it is very important that the labile SOC should be completely removed before measuring the turnover time of stable and refractory pools of SOC.  相似文献   

14.
Crustaceans frequently encounter hypoxic water and have evolved a variety of compensatory mechanisms to deal with low O2 conditions. Typically, large decapod crustaceans attempt to maintain cardiac output by increasing stroke volume to compensate for the hypoxia-induced bradycardia. Grass shrimp (Palaemonetes pugio), small hypoxic tolerant decapod crustaceans, were used to investigate cardiac responses to hypoxia in a smaller crustacean using videomicroscopy and dimensional analysis techniques. In addition, these techniques were compared to the more established dye dilution technique for calculation of cardiac output. No significant difference was found between the two methods for determining cardiac output in grass shrimp. Cardiac parameters (heart rate fH, stroke volume VS, and cardiac output Vb) were monitored in grass shrimp exposed to progressive hypoxia (PO2s=20, 13.3, 10, 5.3, and 2 KPa O2). Shrimp exhibit a cardiac response to hypoxia that is atypical when compared to larger crustaceans. Cardiac output was maintained until water PO2 fell below 10 KPa O2. This maintenance of Vb is consistent in both large and small decapods, however the mechanism differs. In grass shrimp, VS was PO2 dependent and declined significantly while fH increased significantly when PO2 was reduced to 13.3 KPa O2.  相似文献   

15.
For staining in toto, planarians are fixed in a mixture of 10 ml of commercial formalin, 45 ml of 95% ethanol and 2 ml of glacial acetic acid. After treatment with 70% ethanol 3-10 days, they are washed in distilled water and immersed in 10% CuSO4. 5H2O for 3 hr at 50° C, transferred without washing to 1% AgNO3 for 1.0-1.5 hr at 50° C; and then developed in: 10 ml of 1% pyrogallol, 100 ml of 56% ethanol and 1 ml of 0.2% nitric acid. Gold toning, 5% Na2S2O3 and dehydration follow as usual. For staining sections, material is fixed in the same fixative, embedded in paraffin and sectioned at 10 μ. After bringing sections to water, they are immersed in 20% CuSO4. 5H2O for 48 hr at 37° C; then rinsed briefly in distilled water and placed in 7% AgNO3 for 24 hr at 37° C. They are washed briefly in distilled water and reduced in: hydroquincne, 1 gm; Na2SO3, 5 gm and distilled water 100 ml. Gold toning, followed by 5% Na2S2O3 and dehydration completes the process. Any counterstaining may follow.  相似文献   

16.
The amount of hexosamines and acid mucopolysaccharides present in the rat secondary palate increases during the critical stages of palatogenesis, namely, rotation and fusion. The synthesis of acid mucopolysaccharides in vivo and in vitro in the palate was determined by the incorporation of 3H-glucosamine and Na2S35O4. The labeled mucopolysaccharides were isolated by DEAE-cellulose chromatography and were identified on the basis of several criteria as hyaluronic acid and sulfated acid mucopolysaccharides. Hyaluronic acid accounted for approximately 60% of the total acid mucopolysaccharides synthesized in the palate both in vivo and in vitro. DON (6-diazo-5-oxonorleucine), a known inhibitor of acid mucopolysaccharide synthesis, inhibited the incorporation of 3H-glucosamine and Na2S35O4 by palatal shelves in vitro by 70%.  相似文献   

17.
Abstract: The mechanism of recovery from an acid load in primary cultures of rabbit choroid plexus epithelium (CPE) was examined, with emphasis on Na+-dependent antiports. Cells were incubated in saline solutions buffered to pH 7.38 with either HEPES or HCO3? plus 95% O2/5% CO2. Intracellular pH (pHi) was determined from the steady-state distribution of [14C]benzoate. Recovery after acidification with NH4Cl was rapid (t1/2= 5 min) and was dependent on external Na+ (EC50= 12 mM). Hexamethyleneamiloride and ethylisopropylamiloride, potent inhibitors of the Na+/H+ antiport, blocked 80% of recovery when [Na+] was 5 mM with IC50 values of 100 nM. However, neither drug blocked recovery in normal [Na+]. 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), an inhibitor of Cl?/HCO3? antiports, blocked recovery of pHi in a dose-related fashion in the presence of bicarbonate, but not in the presence of HEPES. No inhibition occurred with benzamil, an amiloride congener with high affinity for the Na+ channel, nor with dimethylbenzamil, an inhibitor of Na+/Ca2+ exchange. The carbonic anhydrase inhibitor acetazolamide also did not alter recovery from acidification. In CPE that had been pH-clamped with nigericin and KCl, the initial rate of 22Na+ uptake was very rapid (227 pmol/μg of DNA/min at pH 6.2), was dependent on external [Na+] with an EC50 value of 8 mM, and was inversely related to the pH of the medium. The maximal inhibition of 22Na+ uptake by hexamethyleneamiloride was 60% with an IC50 value of 76 nM. We conclude that both the Na+/H+ antiport and a DIDS-sensitive bicarbonate-dependent antiport are important mechanisms of regulation of the internal pH of rabbit CPE under acidifying conditions. Further, our data suggest that the rabbit choroid plexus Na+/H+ exchanger can be classified as amiloride insensitive, suggesting that this antiport may play a greater role in controlling transport mechanisms than does the pH of the CNS.  相似文献   

18.
In cultures of Streptomyces fradiae on wool as the only source of nutrition inorganic thiosulfate (in amounts up to 0.5 mg of Na2S2O3·5 H2O/ml) was formed as the final product of metabolization of sulfur from cystine of keratin proteins. The presence of thiosulfate was proved by qualitative tests and thin-layer chromatography and estimated quantitatively by spectrophotometry, titrimetry, and capillary isotachophoresis. Metabolization of organic sulfur to thiosulfate excreted into the medium is a process not yet described in microorganisms.  相似文献   

19.
Effect of soil salinity was studied in two maize (Zea mays L.) genotypes, DTP-w-c 9 (comparatively tolerant) and Prabhat (susceptible) under control and three levels of salinity at vegetative and anthesis stages during summer–rainy season. Salinity stress decreased relative water content (RWC), chlorophyll (Chl) and carotenoid (Car) contents, membrane stability index (MSI), potassium (K+) and calcium (Ca2+) contents, and increased the rate of superoxide radical (O2·−) production, contents of hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) (measure of lipid peroxidation), proline, glycine-betaine, total soluble sugars, sodium (Na+), and Na+/K+ and Na+/Ca2+ ratios in both the genotypes. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) increased up to S2 salinity level in both the genotypes, and up to highest salinity level (S3) in DTP-w-c 9 at the two stages. Salinity-induced decrease in RWC, Chl, Car, MSI, K+ and Ca2+ was significantly greater in Prabhat, which also recorded higher Na+ content and Na+/K+ and Na+/Ca2+ ratios than DTP-w-c 9. DTP-w-c 9 recorded higher contents of proline, glycine-betaine, total soluble sugars, K+, Ca2+, activity of SOD, APX, CAT, GR, and comparatively lower O2·−, H2O2 and TBARS contents compared to Prabhat. Results show that salinity tolerance of DTP-w-c 9, as manifested by less decrease in RWC, Chl, Car and MSI, is associated with maintenance of adequate levels of K+ and Ca2+, greater contents of osmolytes, higher antioxidant enzymes activity, and lower O2·−, H2O2, TBARS and Na+ contents than Prabhat.  相似文献   

20.
Blood respiratory, acid-base, and ionic changes in response to hyperosmotic shock were studied in vivo and in vitro in the European flounder. One primary aim was to evaluate regulatory changes in red blood cell (RBC) volume and its interrelationship with blood O2 transporting properties. An acute increase in the ambient salinity from 10 to 30 ppt caused small but significant increases in extracellular osmolality (<20 mosM kg−1), [Na+], and [Cl], which were corrected within 48 h. RBC volume was not significantly changed 3 h after the in vivo exposure to elevated salinity. A small metabolic acidosis was fully developed within 3 h, and this acidosis seemed responsible for a modest decrease in blood O2 affinity (i.e., increased P50-O2 tension at 50% O2 saturation). RBC organic phosphates were unchanged. In vitro elevation of whole blood extracellular osmolality by 60 mosM kg−1 caused immediate RBC shrinkage. The subsequent regulatory volume increase (RVI) showed a graded dependency on blood O2 saturation (SO2). At SO2 values of 0% and 20%, there were full RBC volume recoveries within 120 min, RVI was partial at SO2 values of 45% and 55%, and RVI was absent at a SO2 of 100%. SO2 and P50 did not change significantly during RBC shrinkage and RVI. Thus, the up-concentration of cellular haemoglobin and organic phosphates in hyperosmotically shrunken RBCs had minimal influence on blood O2 transporting properties. The degree of cell shrinkage and time needed for RVI were positively correlated with the magnitude of the rise in extracellular osmolality. The RVI proceeded via elevation of cellular [Na+], [Cl], and to some extent also [K+]. Cell volume regulatory mechanisms are only needed to correct minor volume disturbances in vivo, because changes in extracellular osmolality were limited by an efficient osmotic regulation at the epithelial interface between extracellular compartment and environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号