首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kallistatin is a plasma protein that exhibits pleiotropic effects in vasodilation, anti-angiogenesis, and anti-inflammation. To isolate a kallistatin-binding protein that mediates the vascular actions of kallistatin, we screened and identified a positive clone from a human heart cDNA expression library by using an alkaline phosphatase-kallistatin fusion protein binding assay. Sequence analysis revealed that kallistatin-binding protein is human Kruppel-like factor 4 (KLF4). KLF4 was localized on the plasma membrane of HEK-293 cells and endothelial cells overexpressing KLF4. KLF4 and kallistatin complex formation was identified in endothelial cells by immunoprecipitation followed by immunoblotting. We showed that kallistatin inhibits tumor necrosis factor-α-induced NF-κB activation, as well as vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1 expression in endothelial cells, whereas knockdown of KLF4 by small interfering RNA oligonucleotide abolished the effect of kallistatin. Kallistatin increased endothelial nitric-oxide synthase (eNOS) expression and nitric oxide levels, and these effects were also blocked by KLF4 small interfering RNA oligonucleotide. Moreover, inhibition of eNOS by RNA interference or by NOS inhibitor abolished the blocking effect of kallistatin on vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1 expression. In summary, we identified KLF4 as a kallistatin-binding protein, which has a novel role in mediating the anti-inflammatory actions of kallistatin via increasing eNOS expression in endothelial cells. This study provides a new target for modulating endothelial function in vascular disease.  相似文献   

2.
The Kruppel-like factor KLF2 was recently identified as a novel regulator of endothelial pro-inflammatory and pro-thrombotic function. Here it is shown that overexpression of KLF2 potently inhibits vascular permeability factor/vascular endothelial growth factor (VEGF-A)-mediated angiogenesis and tissue edema in the nude ear mouse model of angiogenesis. In vitro, KLF2 expression retards VEGF-mediated calcium flux, proliferation and induction of pro-inflammatory factors in endothelial cells. This effect is due to a potent inhibition of VEGFR2/KDR expression and promoter activity. These observations identify KLF2 as a regulator of VEGFR2/KDR and provide a foundation for novel approaches to regulate angiogenesis.  相似文献   

3.
4.
5.
Estrogen, the female sex hormone, is known to exert anti-inflammatory and anti-atherogenic effects. Traditionally, estrogen effects were believed to be largely mediated through the classical estrogen receptors (ERs). However, there is increasing evidence that G-protein coupled receptor 30 (GPR30), a novel estrogen receptor, can mediate many estrogenic effects on the vasculature. Despite this, the localization and functional significance of GPR30 in the human vascular endothelium remains poorly understood. Given this background, we examined the subcellular location and potential anti-inflammatory roles of GPR30 using human umbilical vein endothelial cells as a model system. Inflammatory changes were induced by treatment with tumor necrosis factor (TNF), a pro-inflammatory cytokine involved in atherogenesis and many other inflammatory conditions. We found that GPR30 was located predominantly in the endothelial cell nuclei. Treatment with the selective GPR30 agonist G-1 partially attenuated the TNF induced upregulation of pro-inflammatory proteins such as intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was completely abolished by the selective GPR30 antagonist G-15, suggesting that it was indeed mediated in a GPR30 dependent manner. Interestingly, estrogen alone had no effects on TNF-treated endothelium. Concomitant activation of the classical ERs blocked the anti-inflammatory effects of G-1, indicating opposing effects of GPR30 and the classical ERs. Our findings demonstrate that endothelial GPR30 is a novel regulator of the inflammatory response which could be a potential therapeutic target against atherosclerosis and other inflammatory diseases.  相似文献   

6.
Endothelial activation contributes to the development of vascular inflammation and subsequent vascular diseases, particularly atherosclerosis. AGGF1, a new member of angiogenic factors with a FHA and a G-patch domain, has been shown critical for the regulation of vascular differentiation and angiogenesis. In this study, we found that various inflammatory cytokines strongly induced the expression of AGGF1 in endothelial cells (ECs) and identified AGGF1 as a novel anti-inflammatory factor both in vivo and in vitro. Overexpression of AGGF1 significantly repressed the expression of pro-inflammatory molecules such as E-Selectin, ICAM-1, and IL-8 and the adhesion of monocytes onto ECs activated by TNF-α. Conversely, the knockdown of AGGF1 resulted in the increased expressions of these pro-inflammatory molecules and the enhanced monocyte-EC interaction. We further demonstrated that AGGF1 potently attenuated TNF-α triggered NF-κB pathway, as indicated by the decreased promoter activity, nuclear distribution and phosphorylation of NF-κB p65 subunit as well as the increased protein level of IκBα. This inhibitory effect of AGGF1 was further proved through blocking the phosphorylation of ERK induced by TNF-α. Finally, we showed that the FHA domain of AGGF1 was required for its anti-inflammatory effect. Thus, our findings for the first time demonstrate that AGGF1 suppresses endothelial activation responses to TNF-α by antagonizing the ERK/NF-κB pathway, which makes AGGF1 a promising therapeutic candidate for the prevention and treatment of inflammatory diseases.  相似文献   

7.
8.
9.
Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.  相似文献   

10.
Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.  相似文献   

11.
12.
13.
Endothelial dysfunction represents one of the earliest events in vascular atherogenesis. Proinflammatory stimuli activate endothelial cells, resulting in an increased expression of adhesion molecules and chemoattractants that mediate leukocyte and monocyte adhesion, migration, and homing. High density lipoproteins (HDL) inhibit endothelial cell expression of adhesion molecules in response to proinflammatory stimuli. In the present work, we demonstrate that the modification of HDL(3) (the major and the most antiatherogenic HDL subfraction) by 15-lipoxygenase (15-LO), an enzyme overexpressed in the atherosclerotic lesions, impairs the anti-inflammatory activity of this lipoprotein. The 15-LO-modified HDL(3) failed to inhibit TNF-alpha-mediated mRNA and protein induction of adhesion molecules and MCP-1 in several models of human endothelial cells, and promoted inflammatory response by up-regulating the expression of such mediators of inflammation and by increasing monocyte adhesion to endothelial cells. Moreover, 15-LO-modified HDL(3) were unable to contrast the formation of reactive oxygen species in cells incubated with TNF-alpha, and increased the reactive oxygen species content in unstimulated cells. Activation of NF-kappaB and AP-1 was mainly involved in the expression of adhesion molecules and MCP-1 induced by 15-LO-HDL(3). Altogether, these results demonstrate that enzymatic modification induced by 15-LO impaired the protective role of HDL(3), generating a dysfunctional lipoprotein endowed with proinflammatory characteristics.  相似文献   

14.
15.
Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease.  相似文献   

16.
Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease.  相似文献   

17.
Exaggerated endothelial pro-inflammatory response is a hallmark in the early stage of sepsis and contributes to the subsequent tissue injury and organ failure. The anti-inflammatory effects of AMP-activated protein kinase (AMPK) activator metformin in sepsis has been revealed. However, the underlying mechanisms remain not fully understood. In the present study, the potential roles of histone deacetylase 5 (HDAC5) and kruppel-like factor 2 (KLF2) in the effects of metformin on endothelial pro-inflammatory responses were investigated. The results showed that metformin pretreatment increased the phosphorylation of HDAC5 at serine 498, leading to the upregulation of KLF2, and eliminated lipopolysaccharide (LPS) and tumor necrosis factor ⍺ (TNF⍺)-induced upregulation of vascular cell adhesion molecule 1 (VCAM1). Furthermore, the adhesion of HL60 leukocytes to endothelial monolayer was effectively inhibited by metformin. In addition, the in vivo data confirmed that AMPK activation attenuated local and systemic inflammation in endotoxic mice induced by LPS via mediating phosphorylating HDAC5 and restoring KLF2 expression. Our findings revealed that AMPK activation-mediated HDAC5 phosphorylation and KLF2 restoration is, at least partially, responsible to the anti-inflammatory effects of metformin in endotoxemia-induced endothelial cells, which has important implications for the future development of interfering therapies of sepsis.  相似文献   

18.
Identification of the regulators of vascular inflammation is important if we are to understand the molecular mechanisms leading to atherosclerosis and consequent ischemic heart disease, including acute myocardial infarction. Gene polymorphisms in family with sequence similarity 5, member C (FAM5C) are associated with an increased risk of acute myocardial infarction, but little is known about the function of this gene product in blood vessels. Here, we report that the regulation of the expression and function of FAM5C in endothelial cells. We show here that FAM5C is expressed in endothelial cells in vitro and in vivo. Immunofluorescence microcopy showed localization of FAM5C in the Golgi in cultured human endothelial cells. Immunohistochemistry on serial sections of human coronary artery showed that FAM5C-positive endothelium expressed intercellular adhesion molecule-1 (ICAM-1) or vascular cell adhesion molecule-1 (VCAM-1). In cultured human endothelial cells, the overexpression of FAM5C increased the reactive oxygen species (ROS) production, nuclear factor-κB (NF-κB) activity and the expression of ICAM-1, VCAM-1 and E-selectin mRNAs, resulting in enhanced monocyte adhesion. FAM5C was upregulated in response to inflammatory stimuli, such as TNF-α, in an NF-κB- and JNK-dependent manner. Knockdown of FAM5C by small interfering RNA inhibited the increase in the TNF-α-induced production of ROS, NF-κB activity and expression of these leukocyte adhesion molecule mRNAs, resulting in reduced monocyte adhesion. These results suggest that in endothelial cells, when FAM5C is upregulated in response to inflammatory stimuli, it increases the expression of leukocyte adhesion molecules by increasing ROS production and NF-κB activity.  相似文献   

19.
20.
Several observational studies have shown that estrogen replacement therapy decreases cardiovascular mortality and morbidity in postmenopausal women. However, The Women's Health Initiative (WHI) study has found that women receiving estrogen plus progestin had a significantly higher risk of breast cancer, coronary heart disease, stroke, and pulmonary embolus. In the present study, we examined whether estrogen prevents mechanisms that relate to plaque formation by inhibiting monocyte adhesion to endothelial cells. ECV304 cells, an endothelial cell line that normally expresses minimal estrogen receptor (ER)alpha, were transfected with an ERalpha expression plasmid. Treatment with tumor necrosis factor (TNF)-alpha increased expression of vascular cell adhesion molecule (VCAM)-1 mRNA, activation of nuclear factor-kappaB (NF-kappaB), and U937 cell adhesion in ECV304 cells. These effects of TNF-alpha were not significantly inhibited by pretreatment of native ECV304 cells with 17beta-estradiol (E(2)). In ECV304 cells overexpressing ERalpha, E(2) significantly inhibited the effects of TNF-alpha on NF-kappaB activation, VCAM-1 expression, and U937 cell adhesion. These findings suggest E(2) suppresses inflammatory cell adhesion to vascular endothelial cells that possess functional estrogen receptors. The mechanism of suppression may involve inhibition of NF-kappaB-mediated up-regulation of VCAM-1 expression induced by atherogenic stimuli. E(2) may prevent plaque formation, as first stage of atheroscrelosis through inhibiting adhesion monocytes to endothelial cell. Actions of estrogen replacement therapy can be assessed in terms of densities of functional ERalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号