首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae meiosis-specific HOP1, which encodes a core component of synaptonemal complex, plays a key role in proper pairing of homologous chromosomes and processing of meiotic DNA double strand breaks. Isolation and analysis of hop1 mutants indicated that these functions require Cys(371) of Hop1 embedded in a region (residues 343-378) sharing homology to a zinc finger motif (ZnF). However, the precise biochemical function of Hop1, or its putative ZnF, in these processes is poorly understood. Our previous studies revealed that Hop1 is a DNA-binding protein, showed substantially higher binding affinity for G4 DNA, and enhances its formation. We report herein that ZnF appears to be sufficient for both zinc as well as DNA-binding activities. Molecular modeling studies suggested that Hop1 ZnF differs from the previously characterized natural ZnFs. The zinc-binding assay showed that the affinity for zinc is weaker for C371S ZnF mutant compared with the wild type (WT) ZnF. Analysis of CD spectra indicated that zinc and DNA induce substantial conformational changes in WT ZnF, but not in C371S ZnF mutant. The results from a number of different experimental approaches suggested that the DNA-binding properties of ZnF are similar to those of full-length Hop1 and that interaction with DNA rich in G residues is particularly robust. Significantly, WT ZnF by itself, but not C371S mutant, was able to bind duplex DNA and promote interstitial pairing of DNA double helices via the formation of guanine quartets. Together, these results implicate a direct role for Hop1 in pairing of homologous chromosomes during meiosis.  相似文献   

2.
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.  相似文献   

3.
Yu J  Ha T  Schulten K 《Nucleic acids research》2004,32(22):6683-6695
Homologous recombination plays a key role in the restart of stalled replication forks and in the generation of genetic diversity. During this process, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction. In the presence of metal ions, the Holliday junction folds into the stacked-X structure that has two alternative conformers. Experiments have revealed the spontaneous transitions between these conformers, but their detailed pathways are not known. Here, we report a series of molecular dynamics simulations of the Holliday junction at physiological and elevated (400 K) temperatures. The simulations reveal new tetrahedral intermediates and suggest a schematic framework for conformer transitions. The tetrahedral intermediates bear resemblance to the junction conformation in complex with a junction-resolving enzyme, T7 endonuclease I, and indeed, one intermediate forms a stable complex with the enzyme as demonstrated in one simulation. We also describe free energy minima for various states of the Holliday junction system, which arise during conformer transitions. The results show that magnesium ions stabilize the stacked-X form and destabilize the open and tetrahedral intermediates. Overall, our study provides a detailed dynamic model of the Holliday junction undergoing a conformer transition.  相似文献   

4.
5.
Nucleoporin (Nup) 153 is a highly mobile, multifunctional, and essential nuclear pore protein. It contains four zinc finger motifs that are thought to be crucial for the regulation of transport-receptor/cargo interactions via their binding to the small guanine nucleotide binding protein, Ran. We found this interaction to be independent of the phoshorylation state of the nucleotide. Ran binds with the highest affinity to the second zinc finger motif of Nup153 (Nup153ZnF2). Here we present the crystal structure of this complex, revealing a new type of Ran-Ran interaction partner interface together with the solution structure of Nup153ZnF2. According to our complex structure, Nup153ZnF2 binding to Ran excludes the formation of a Ran-importin-beta complex. This finding suggests a local Nup153-mediated Ran reservoir at the nucleoplasmic distal ring of the nuclear pore, where nucleotide exchange may take place in a ternary Nup153-Ran-RCC1 complex, so that import complexes are efficiently terminated.  相似文献   

6.
DNA polymerase δ (Pol δ) plays a central role in eukaryotic chromosomal DNA replication, repair and recombination. In fission yeast, Pol δ is a tetrameric enzyme, comprising the catalytic subunit Pol3 and three smaller subunits, Cdc1, Cdc27 and Cdm1. Previous studies have demonstrated a direct interaction between Pol3 and Cdc1, the B-subunit of the complex. Here it is shown that removal of the tandem zinc finger modules located at the C-terminus of Pol3 by targeted proteolysis renders the Pol3 protein non-functional in vivo, and that the C-terminal zinc finger module ZnF2 is both necessary and sufficient for binding to the B-subunit in vivo and in vitro. Extensive mutagenesis of the ZnF2 module identifies important residues for B-subunit binding. In particular, disruption of the ZnF2 module by substitution of the putative metal-coordinating cysteines with alanine abolishes B-subunit binding and in vivo function. Finally, evidence is presented suggesting that the ZnF region is post-translationally modified in fission yeast cells.  相似文献   

7.
Holliday junctions are four-way branched DNA structures that are formed during recombination and by replication fork regression. Their processing depends on helicases that catalyze junction branch migration, and endonucleases that resolve the junction into nicked linear DNAs. Here we have investigated the role of a DNA binding motif called SAP in binding and resolving Holliday junctions by the fission yeast mitochondrial resolvase SpCCE1. Mutation or partial/complete deletion of the SAP motif dramatically impairs the ability of SpCCE1 to resolve Holliday junctions in a heterologous in vivo system. These mutant proteins retain the ability to recognize the junction structure and to distort it upon binding. However, once formed the mutant protein-junction complexes are relatively unstable and dissociate much faster than wild-type complexes. We show that binding stability is necessary for efficient junction resolution, and that this may be due in part to a requirement for maintaining the junction in an open conformation so that it can branch migrate to cleavable sites.  相似文献   

8.
The phage T4 protein UvsW drives Holliday junction branch migration   总被引:2,自引:0,他引:2  
The phage T4 UvsW protein has been shown to play a crucial role in the switch from origin-dependent to recombination-dependent replication in T4 infections through the unwinding of origin R-loop initiation intermediates. UvsW also functions with UvsX and UvsY to repair damaged DNA through homologous recombination, and, based on genetic evidence, has been proposed to act as a Holliday junction branch migration enzyme. Here we report the purification and characterization of UvsW. Using oligonucleotide-based substrates, we confirm that UvsW unwinds branched DNA substrates, including X and Y structures, but shows little activity in unwinding linear duplex substrates with blunt or single-strand ends. Using a novel Holliday junction-containing substrate, we also demonstrate that UvsW promotes the branch migration of Holliday junctions efficiently through more than 1000 bp of DNA. The ATP hydrolysis-deficient mutant protein, UvsW-K141R, is unable to promote Holliday junction branch migration. However, both UvsW and UvsW-K141R are capable of stabilizing Holliday junctions against spontaneous branch migration when ATP is not present. Using two-dimensional agarose gel electrophoresis we also show that UvsW acts on T4-generated replication intermediates, including Holliday junction-containing X-shaped intermediates and replication fork-shaped intermediates. Taken together, these results strongly support a role for UvsW in the branch migration of Holliday junctions that form during T4 recombination, replication, and repair.  相似文献   

9.
We describe the construction and characterization of an oligonucleotide Holliday junction analog and characterize its interaction with a Saccharomyces cerevisiae endonuclease that cleaves Holliday junctions. A Holliday junction analog containing four duplex arms and 54 base pairs was constructed by annealing four unique synthetic oligonucleotides. Mixing curve analysis showed that the complex contained a 1:1:1:1 mol ratio of the four unique sequence strands. In addition, a linear duplex with a sequence identical to two of the junction arms was also constructed for use as a control fragment. High resolution gel exclusion chromatography was used to purify and characterize the synthetic junction. The synthetic Holliday junction was found to be a specific inhibitor of a S. cerevisiae enzyme that catalyzes the cleavage of Holliday junctions. Under standard cleavage conditions, 50% inhibition was observed at a synthetic Holliday junction to substrate ratio of 7/1, whereas no inhibition by linear duplex was observed at molar ratios in excess of 150/1. Kinetic analysis showed that Holliday junction was a competitive inhibitor of the reaction and had an apparent Ki = 2.5 nM, although the mode of inhibition was complex. The synthetic Holliday junction was not a substrate for the enzyme, but was found to form a specific complex with the enzyme as evidenced by polyacrylamide gel electrophoresis DNA binding assays.  相似文献   

10.
Lu P  Lu G  Yan C  Wang L  Li W  Yin P 《The Biochemical journal》2012,441(2):591-597
The Prp19-associated complex [NTC (nineteen complex)] plays a crucial role in intron removal during premature mRNA splicing in eukaryotes. Only one component of the NTC, Cwc2, is capable of binding RNA. In the present study we report the 1.9 ? (1 ?=0.1 nm) X-ray structure of the Cwc2 core domain, which is both necessary and sufficient for RNA binding. The Cwc2 core domain contains two sub-domains, a CCCH-type ZnF (zinc finger) and a RRM (RNA recognition motif). Unexpectedly, the ZnF domain and the RRM form a single folding unit, glued together by extensive hydrophobic interactions and hydrogen bonds. Structure-guided mutational analysis revealed that the intervening loop [known as the RB loop (RNA-binding loop)] between ZnF and RRM plays an essential role in RNA binding. In addition, a number of highly conserved positively charged residues on the β-strands of RRM make an important contribution to RNA binding. Intriguingly, these residues and a portion of the RB loop constitute an extended basic surface strip that encircles Cwc2 halfway. The present study serves as a framework for understanding the regulatory function of the NTC in RNA splicing.  相似文献   

11.
The resolving enzyme Hjc, which cleaves Holliday junctions with a high degree of structural specificity, is conserved in all archaea. Like RuvC in Escherichia coli, Hjc functions in the related processes of homologous recombination and double-strand break repair. In bacteria, the RuvAB complex binds Holliday junctions and catalyses ATP-dependent branch migration, but the equivalent proteins in archaea and eukarya are unknown. Here, we demonstrate that Hjc from Sulfolobus solfataricus forms a physical interaction with the sliding clamp PCNA via a C-terminal PCNA-interacting peptide (PIP) motif in Hjc. PCNA stimulates the Holliday junction cleavage activity of Hjc in vitro, and deletion of the PIP motif abrogates this effect. This is the first report of a functional interaction between a sliding clamp and a junction-resolving enzyme, and raises the possibility that PCNA could recruit a variety of different proteins to act on Holliday junctions in vivo.  相似文献   

12.
13.
The RuvB hexamer is the chemomechanical motor of the RuvAB complex that migrates Holliday junction branch-points in DNA recombination and the rescue of stalled DNA replication forks. The 1.6 A crystal structure of Thermotoga maritima RuvB together with five mutant structures reveal that RuvB is an ATPase-associated with diverse cellular activities (AAA+-class ATPase) with a winged-helix DNA-binding domain. The RuvB-ADP complex structure and mutagenesis suggest how AAA+-class ATPases couple nucleotide binding and hydrolysis to interdomain conformational changes and asymmetry within the RuvB hexamer implied by the crystallographic packing and small-angle X-ray scattering in solution. ATP-driven domain motion is positioned to move double-stranded DNA through the hexamer and drive conformational changes between subunits by altering the complementary hydrophilic protein- protein interfaces. Structural and biochemical analysis of five motifs in the protein suggest that ATP binding is a strained conformation recognized both by sensors and the Walker motifs and that intersubunit activation occurs by an arginine finger motif reminiscent of the GTPase-activating proteins. Taken together, these results provide insights into how RuvB functions as a motor for branch migration of Holliday junctions.  相似文献   

14.
MutLγ, a heterodimer of the MutL homologues Mlh1 and Mlh3, plays a critical role during meiotic homologous recombination. The meiotic function of Mlh3 is fully dependent on the integrity of a putative nuclease motif DQHAX2EX4E, inferring that the anticipated nuclease activity of Mlh1-Mlh3 is involved in the processing of joint molecules to generate crossover recombination products. Although a vast body of genetic and cell biological data regarding Mlh1-Mlh3 is available, mechanistic insights into its function have been lacking due to the unavailability of the recombinant protein complex. Here we expressed the yeast Mlh1-Mlh3 heterodimer and purified it into near homogeneity. We show that recombinant MutLγ is a nuclease that nicks double-stranded DNA. We demonstrate that MutLγ binds DNA with a high affinity and shows a marked preference for Holliday junctions. We also expressed the human MLH1-MLH3 complex and show that preferential binding to Holliday junctions is a conserved capacity of eukaryotic MutLγ complexes. Specific DNA recognition has never been observed with any other eukaryotic MutL homologue. MutLγ thus represents a new paradigm for the function of the eukaryotic MutL protein family. We provide insights into the mode of Holliday junction recognition and show that Mlh1-Mlh3 prefers to bind the open unstacked Holliday junction form. This further supports the model where MutLγ is part of a complex acting on joint molecules to generate crossovers in meiosis.  相似文献   

15.
16.
17.
In Escherichia coli, the ruvA, ruvB and ruvC gene products are required for genetic recombination and the recombinational repair of DNA damage. New studies suggest that these three proteins function late in recombination and process Holliday junctions made by RecA protein-mediated strand exchange. In vitro, RuvA protein binds a Holliday junction with high affinity and, together with RuvB (an ATPase), promotes ATP-dependent branch migration of the junction leading to the formation of heteroduplex DNA. The third protein, RuvC, which acts independently of RuvA and RuvB, resolves recombination intermediates by specific endonucleolytic cleavage of the Holliday junction.  相似文献   

18.
Endonuclease VII is an enzyme from bacteriophage T4 capable of resolving four-arm Holliday junction intermediates in recombination. Since natural Holliday junctions have homologous (2-fold) sequence symmetry, they can branch migrate, creating a population of substrates that have the branch point at different sites. We have explored the substrate requirements of endonuclease VII by using immobile analogs of Holliday junctions that lack this homology, thereby situating the branch point at a fixed site in the molecule. We have found that immobile junctions whose double-helical arms contain fewer than nine nucleotide pairs do not serve as substrates for resolution by endonuclease VII. Scission of substrates with 2-fold symmetrically elongated arms produces resolution products that are a function of the particular arms that are lengthened. We have confirmed that the scission products are those of resolution, rather than nicking of individual strands, by using shamrock junction molecules formed from a single oligonucleotide strand. A combination of end-labeled and internally labeled shamrock molecules has been used to demonstrate that all of the scission is due to coordinated cleavage of DNA on opposite sides of the junction, 3' to the branch point. Endonuclease VII is known to cleave the crossover strands of Holliday junctions in this fashion. The relationship of the long arms to the cleavage direction suggests that the portion of the enzyme which requires the minimum arm length interacts with the pair of arms containing the 3' portion of the crossover strands on the bound surface of the antiparallel junction.  相似文献   

19.
The INDETERMINATE protein, ID1, plays a key role in regulating the transition to flowering in maize. ID1 is the founding member of a plant-specific zinc finger protein family that is defined by a highly conserved amino sequence called the ID domain. The ID domain includes a cluster of three different types of zinc fingers separated from a fourth C2H2 finger by a long spacer; ID1 is distinct from other ID domain proteins by having a much longer spacer. In vitro DNA selection and amplification binding assays and DNA binding experiments showed that ID1 binds selectively to an 11 bp consensus motif via the ID domain. Unexpectedly, site-directed mutagenesis of the ID1 protein showed that zinc fingers located at each end of the ID domain are not required for binding to the consensus motif despite the fact that one of these zinc fingers is a canonical C2H2 DNA binding domain. In addition, an ID1 in vitro deletion mutant that lacks the extra spacer between zinc fingers binds the same 11 bp motif as normal ID1, suggesting that all ID domain-containing proteins recognize the same DNA target sequence. Our results demonstrate that maize ID1 and ID domain proteins have novel zinc finger configurations with unique DNA binding properties.  相似文献   

20.
Homologous recombination is a fundamental cellular process that shapes and reshapes the genomes of all organisms and promotes repair of damaged DNA. A key step in this process is the resolution of Holliday junctions formed by homologous DNA pairing and strand exchange. In Escherichia coli , a Holliday junction is processed into recombinant products by the concerted activities of the RuvA and RuvB proteins, which together drive branch migration, and RuvC endonuclease, which resolves the structure. In the absence of RuvABC, recombination can be promoted by increasing the expression of the RusA endonuclease, a Holliday junction resolvase encoded by a cryptic prophage gene. Here, we describe the DNA binding properties of RusA. We found that RusA was highly selective for branched molecules and formed complexes with these structures even in the presence of a large excess of linear duplex DNA. However, it does bind weakly to linear duplex DNA. Under conditions where there was no detectable binding to duplex DNA, RusA formed a highly structured complex with a synthetic Holliday junction that was remarkably stable and insensitive to divalent metal ions. The duplex arms were found to adopt a specific alignment within this complex that approximated to a tetrahedral conformation of the junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号