首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The proteins corresponding in molecular weight and solubility in salt solutions to skeletal muscle actin and myosin were revealed in liver and thymus chromatin fragments. When the ionic strength reached 0.3, about 60% of the myosin-like protein identified by electrophoretic mobility of high chains and the K+-EDTA-ATPase activity was cosedimented with nucleohistones. In the presence of ATP or PPi and Mg2+ the solubility of myosin in such salt solutions increased up to 90%, which was paralleled with significant stimulation of RNA release from the nucleohistones. The conformity in the degree of extraction and sedimentation of RNA and intranuclear myosin was also observed in other solutions used during myosin purification. The supposition that the nuclear system of contractile proteins causes labile, ATP-dependent binding of RNA to chromatin is discussed. No essential differences in the actin or myosin contents in the fractions of soluble and non-soluble chromatin were detected.  相似文献   

3.
4.
The interaction of water-soluble nonmembraneous proteins (trypsin and the basic pancreatic trypsin inhibitor (BPTI)) with soybean phospholipids was studied using multilamellar vesicles. Multilamellar vesicles were obtained from soybean lipid extracts and mixtures of individual phospholipids based on phosphatidylcholine. These mixtures contain different phospholipids: "bilayer", "nonbilayer", and negatively charged. It was shown that the content of both proteins in the complex depends on pH and the presence of negatively charged components. On the basis of this finding, the conclusion about the electrostatic nature of lipid-protein interaction was made. The structural organization of soybean phospholipids in multilamellar vesicles was studied in the presence and absence of the proteins using broad-line 31P-NMR spectroscopy. It was found that, in mixtures of phospholipids of complex composition, different types of phases coexist, and phospholipids of different classes can compensate the effects of each other. Trypsin and BPTI affect the structure of phospholipids in a similar way, inducing considerable structural changes in multilamellar vesicles of preparations containing negatively charged components in whose structure there coexisted primordially the bilayer and isotropic phases.  相似文献   

5.
6.
7.
8.
9.
The phospholipases A2, C and D have been used to investigate the localization of phosphatidylcholine in the phosphatidylcholine exchange protein from beef liver. The rate of enzymatic hydrolysis of the protein-bound phosphatidylcholine was found to be very low. Addition of deoxycholate, isobutanol or dioxane to the native protein, under conditions where delipidation did not occur, greatly enhanced the hydrolytic action of the phospholipases. From these results it is concluded that phosphatidylcholine may be buried in the protein molecule.  相似文献   

10.
1. The influence of insulin on rat liver membrane lipid composition, fluidity, some enzyme activities and asymmetry of microsomal phospholipids were investigated. 2. The total phospholipids and cholesterol were increased in microsomes and reduced in plasma membranes from insulin-treated rats. 3. Of all the investigated enzymes participating in the lipid metabolism, only the neutral sphingomyelinase activity was observed to be enhanced, whereas the ceramide-phosphatidylethanolamine (PE) synthetase and phospholipase A2 activities remained unchanged. 4. Insulin administration caused translocation of phosphatidylserine (PS) and PE to the outer leaflet and of phosphatidylinositol (PI) to the inner leaflet of microsomal membranes.  相似文献   

11.
12.
13.
14.
The interactions of carbonmonoxyhemoglobin (HbCO), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and polyhistidine with phospholipid monolayers at the air-water interface were studied at physiological pH and ionic strength. HbCO and GAPDH both interact more strongly with monolayers containing negatively charged lipids. The interaction of HbCO and GAPDH with lipid monolayers decreases with increasing pH. Both the HbCO-monolayer and the GAPDH-monolayer interactions can be modeled as diffusion-limited processes, with kinetic data fit to a stretched exponential equation. The significance of these kinetics are discussed. Polyhistidine interacts only with monolayers containing lipids with negatively charged headgroups. In total, the results presented are consistent with an HbCO-lipid interaction with a large electrostatic component, a GAPDH-lipid interaction with comparable electrostatic and hydrophobic components, and a polyhistidine-lipid interaction that is solely electrostatic.  相似文献   

15.
16.
17.
18.
One of the biggest challenges in pharmaceutical research is obtaining integral membrane proteins in a functional, solubilized, and monodisperse state that provides a native-like environment that maintains the spectrum of in vivo activities. Many of these integral membrane proteins are receptors, enzymes, or other macromolecular assemblies that are important drug targets. An example is the general class of proteins composed of seven-transmembrane segments (7-TM) as exemplified by the G-protein-coupled receptors. In this article, we describe a simple system for self-assembling bacteriorhodopsin, as a model protein containing 7-TM helices, with phospholipids to form a nanometer-scale soluble bilayer structure encircled by a 200 amino acid scaffold protein. The result is the single molecule incorporation of an integral membrane protein target into a soluble and monodisperse structure that allows the structural and functional tools of solution biochemistry to be applied.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号