首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V kappa gene family usage was determined in the resident in vivo-activated plasma cells of individual diseased MRL mice by using in situ hybridization. In this way, the entire autoimmune repertoire could be analyzed. Autoantibody levels and extent of glomerulonephritis were also measured, so that the severity of disease could be assessed. It was found that V kappa expression was highly variable from mouse to mouse. Some animals displayed a V kappa family repertoire similar to mitogen-stimulated cells and consistent with the size of the families. These animals tended to have lower disease indices. Other animals, which had higher disease indices, displayed considerable over- or underutilization of individual V kappa families. However, no particular V kappa families were repeatedly biased in their expression, as was found at the VH level with J558. Importantly, in the 10% of animals that expressed VH J558 exclusively, four or more V kappa families were expressed and multiple antiself specificities were produced. The data are most consistent with a number of J558 genes being expanded in a variety of self-specificities. However, because only VH J558 is expressed in these sicker animals, nonspecific polyclonal activation is highly unlikely. These results underscore the continuing evolution of the autoimmune repertoire, with considerable diversity at early stages followed by a highly selected repertoire in which a potential role for nonspecific polyclonal activation is virtually excluded.  相似文献   

2.
G E Wu  C J Paige 《The EMBO journal》1986,5(13):3475-3481
The immunoglobulin heavy chain variable region (VH) genes of the mouse have been categorized into families based upon sequence homology. Utilizing the RNA colony blot assay we have determined the expression of eight of these families in B cell colonies derived from either surface immunoglobulin positive (sIg+) adult spleen B cells or sIg- fetal liver pre-B cells. We demonstrate, based upon the analysis of greater than 6000 individual colonies, that VH gene usage is a characteristic of the mouse strain studied. C57BL/6 mice most frequently (45%) utilize family VHJ558, the largest VH family, whereas BALB/c mice most frequently (22%) utilize family VH7183, the most JH proximal family in BALB/c mice. Moreover, colonies derived from sIg- fetal liver derived precursors show similar patterns, suggesting that selection based on exogenous antigen is not an important parameter in determining VH gene family usage.  相似文献   

3.
This study examines Ig VH utilization in murine lupus with emphasis on the relative contribution of 3' and 5' gene families. We used in situ hybridization with 35S-labeled ssRNA probes to detect VH expression in individual spleen cells. Cells were taken from unmanipulated animals, and were not stimulated in vitro. This approach allows analysis of VH usage among only those B cells which have undergone activation in vivo, while minimizing the potential for skewing in vitro. We compared usage of the 3' 7183 and Q52 families with the more 5' J558 family in adult NZB, MRL-lpr/lpr, and nonautoimmune NIH Swiss mice. VH utilization in the autoimmune strains was proportionate to VH family size, and was not biased toward the 3' families when compared with the Swiss repertoire. Moreover, 3' skewing did not develop in NZB mice with increasing age. Thus, systemic autoimmunity is not associated with impaired normalization of the adult repertoire away from the 3' bias of early ontogeny. Instead, our data support a stochastic model for VH gene usage in the activated B cells and plasma cells of adult lupus mice.  相似文献   

4.
The genes encoding 11 independently derived anti-DNA autoantibodies from the lupus-prone mouse strain, MRL-lpr/lpr, were examined with VH, D, and JH gene probes. These autoantibodies do not define new VH gene families, since all of the autoantibodies were encoded by VH genes from four of the nine known gene families. A minimum of nine different VH genes encoded this panel of 11 anti-DNA autoantibodies. These results are consistent with the stochastic use of the VH gene repertoire and the expression of multiple VH genes. However, the data is also consistent with a biased usage of the VH gene repertoire. First, two pairs of autoantibodies, one from the J558 family and one from the 7183 family, appear to express identical or closely related VH genes as determined by the position of two restriction enzyme sites 5' of the expressed VH genes. In addition, three autoantibodies that appear to be sister clones might define a third VH gene that is used repeatedly. Secondly, about 45% of the panel is encoded by the Q52 and 7183 families, which are the 3' most families. These families have been shown to be preferentially rearranged early in B cell ontogeny. This suggests that some anti-DNA autoantibodies might originate from a population of B cells that predominate early in ontogeny. An alternative hypothesis is that the potential bias in VH gene and gene family usage could be due to antigen selection. All four JH genes are expressed, although the JH1 gene appears to be underutilized in both expressed and unexpressed rearrangements. Two members of the panel that bind double-stranded DNA were encoded by two different VH gene families, the S107 family and the J558 family.  相似文献   

5.
To determine the genetic origins of lupus auto-antibodies, we analyzed the relationship between VH gene usage and auto-Ag-binding properties of 352 B cell hybridomas derived from MRL-lpr/lpr mice. The hybridomas were derived from neonatal, 1-month-old, 3-month-old, and 6-month-old mice. The experimental strategy provided that the hybridomas were monoclonal at initial evaluation, so the Ag binding and V gene frequencies of the entire population could be determined. Initially, 1032 Ig-producing hybridomas were evaluated for binding to six Ag; VH gene family use was determined in 119 anti-DNA and anti-rabbit thymus extract (RTE) antibodies (autoantibodies) and in 233 age-matched Ig that did not bind to any of the six Ag (nonbinders). Neonatal B cells, including cross-reactive IgM autoantibodies and nonbinder IgM, used relatively 3' VH genes. The majority of B cells in adult mice used VH genes of the J558 family. Although J558 use was significantly higher among the autoantibodies (anti-DNA and anti-RTE) than among the nonbinder Ig, this difference was due to a higher frequency of J558 use by 1-month-old mice. At 3 months, J558 use by the nonbinder Ig increased to the same frequency of J558 use as in the autoantibody population. J558 use in both groups of antibodies exceeded a previously reported estimation of J558 expression in the functional B cell repertoire of young adult MRL-lpr/lpr mice. Several subgroups of antibodies that share properties with pathogenic Ig, including IgG, cross-reactive Ig, and anti-dsDNA autoantibodies, demonstrated a marked preferential expression of the J558 family. These results suggest that there is an age-related bias in the activation of B cells using J558 VH genes in MRL-lpr/lpr mice that is under the influence of a selective force distinct from, or in addition to, an ssDNA or RTE auto-Ag-driven response.  相似文献   

6.
The fetal VH gene repertoire was shown previously to be characterized by overrepresentation of D-proximal families, VH 7183 and VH Q52, compared with adult bone marrow B cells in which VH genes were expressed in a more stochastic fashion. To determine the underlying mechanisms of these findings, adult vs fetal progenitors were placed in the same supportive microenvironment and the resulting B lineage cells analyzed for VH gene family expression. The supportive microenvironment was provided by established adult bone marrow stromal cell layers. In this way the relative importance of environmental vs genetic influences could be determined. The fetal B cells and pre-B cells that developed on adult stromal cells maintained a fetal-like VH gene family repertoire with preference for D-proximal families VH 7183 and Q52. In contrast, adult cultured B cells maintained the adult-like repertoire with predominance of the largest family VH J558. Only after long-term incubation was there a change in the expression of particular VH gene families. These findings suggest that the D-proximal VH gene family preference observed early in ontogeny is associated more with the inherent genetic potential of B cell progenitors that predominate during fetal life and less with environmental influences.  相似文献   

7.
Two-hundred twenty-four hybridomas secreting monoclonal IgM rheumatoid factor (hIgMRF) derived from MRL-lpr/lpr, MRL-+/+ and C57BL/6-lpr/lpr autoimmune mice were analyzed with regard to IgG subclass and domain specificity, and some for VH gene expression patterns. Among these mice, only MRL-lpr/lpr develop arthritis. Clonotypes specific for each of the four mouse IgG subclasses and clonotypes reacting with more than one IgG subclass were identified. Although each panel contained several clonotypes, the predominant one differed in each strain (MRL-lpr/lpr, anti-IgG2a; MRL-+/+, combined anti-IgG2a and 2b; C57BL/6-lpr/lpr, anti-IgG1 or combined anti-IgG1, 2a, and 3). The IgG domains recognized by these monoclonals were defined with mutant Ig carrying IgG1 heavy chains that lacked either the CH1 or CH3 domains, variant Ig carrying hybrid IgG2b-2a heavy chains, and IgG fragments. Inhibition of hIgMRF binding to IgG substrates by protein A was also assessed. Most determinants were assigned to the CH3 domain, but determinants in the hinge region, CH2 domain, and in some instances, even in the Fab portion, could also be identified. Hybridization of cytoplasmic RNA from 35 classes of diverse IgG subclass specificity with VH gene probes representing seven of the approximately 10 VH families (7183, S107, Q52, J558, J606, 36-60, X24) indicated that approximately 90% of these clones expressed VH genes belonging to the large J558 gene family. The results indicate that murine IgMRF are extremely heterogeneous in IgG subclass and domain specificities; the genetic background influences RF specificity characteristics that may relate to pathogenicity; and considering the complexity of the J558 VH gene family and reported RF heavy chain assignments to additional VH gene families, it appears that VH genes encoding RF are diverse.  相似文献   

8.
The expression of the VH genes in 46 murine hybridoma cells that secrete mAb directed to the cancer-associated carbohydrate Ag, especially acidic glycolipids such as gangliosides and sulfated glycoplipids, was analyzed by Northern hybridization of poly(A)+ RNA of hybridoma with cDNA probes for nine VH gene families. Different hybridomas tended to express VH genes of the same family when the cognate Ag had the same or similar carbohydrate structures; i.e., the VH genes of the J558 family (group 1) were preferentially expressed in the mAb directed to various gangliosides that have NeuAc alpha (or NeuGc alpha) 2-3 and/or 2-8 linkage (71%), the most common linkage of sialic acid residues in the gangliosides of higher animals, and the hybridomas directed to sulfated glycolipids also expressed mainly the VH genes of the J558 family (80%). In contrast, the five mAb directed to various gangliosides with NeuAc alpha 2-6 linkage were exclusively encoded by the VH genes of Q52 family (group 2, 100%), and three antibodies directed to gangliosides with a NeuAc alpha 2-9 linkage all expressed genes of J606 family (group 6, 100%). The VH family usage was largely correlated with the linkage of sialic acid residues in the cognate carbohydrate Ag, but was not correlated at all with the difference in the fine specificities toward the core neutral carbohydrate chain, to which the sialic acid residues were attached. These findings suggest that the VH gene family in these anticarbohydrate antibodies is selected, depending primarily on the linkage of the sialic acid residues in carbohydrate Ag; these residues form the immunodominant sugar residue in the respective antigenic determinant.  相似文献   

9.
10.
We have characterized two novel mouse VH gene families, VH3609N and VHSM7. These VH families have recently diverged from previously defined VH families. The VH3609N family, which may contain only one member in most inbred strains of mice, shares sequence similarity with the VHJ606 family and is located to the 3' side of VHJ606. VHSM7, with at least three members, is related to the VHJ558 family but maps 3' of VHJ558. These findings suggest that physical displacement of VH sequences may facilitate their subsequent divergence. During the early stages of VH gene family evolution that are exemplified by these new families, amino acid replacements have been selected against in frame-work regions and selected for in complementarity-determining regions. This pattern of nucleotide substitution appears to reflect evolutionary pressures to maintain germ-line VH diversity and, possibly, to select for new antibody specificities, as well as to select against mutations resulting in aberrant Ig. The classification of VH sequences with borderline similarity to previously defined VH families is discussed.  相似文献   

11.
Strain-dependent expression of VH gene families   总被引:12,自引:0,他引:12  
The tremendous diversity of the antibody specificity repertoire stems from the ability of each developing B cell to select one out of many possible variable, diversity, and joining gene segments by specific rearrangement of the DNA. The mechanism by which V region gene segments is selected is not known. Moreover, evidence for both random and nonrandom expression of VH genes in mature B cells has been presented previously. In this report, the technique of in situ hybridization is used to accurately measure at the single cell level VH gene family expression in LPS-induced cells from several strains. In this way, at least one-third of the B cells are stimulated and a large sampling of activated splenocytes from each strain analyzed. The use of in situ hybridization eliminates any potential biases resulting from transformation protocols. In addition, because all populations of cells are analyzed by both in situ hybridization and immunocytochemical staining with anti-IgM, the proportion of cells detected by in situ hybridization could be compared with the proportion of B cells, blasts, and plasma cells in the population. It was concluded from these comparisons that the cells being detected by in situ hybridization under the conditions described are plasmablasts and plasma cells. Therefore, an accurate measure of the functional and expressed VH gene repertoire could be made. The results clearly demonstrate strain-dependent variation in VH gene family expression, particularly VH 7183 and VH J558 with up to three-fold differences observed. Thus, either there is considerable strain variation in the number of functional VH gene family segments or the expression of VH genes is not entirely random.  相似文献   

12.
A rabbit antiserum raised against anti-alprenolol mAb 14C3 detects common antigenic determinants (ADC3) in 10 out of 14 anti-alprenolol mAb that use different germ-line VH and/or Vk genes. The anti-14C3 antiserum binds only to H chains in immunoblots, therefore suggesting that at least part of the ADC3 determinants may be encoded by H chain V region genes. Analysis of VH gene family usage among the anti-alprenolol mAb reveals that the expression of ADC3 correlates with utilization of VH genes that belong to the J558 gene family, regardless of the JH, Vk, and Jk genes. To determine whether the ADC3 determinants are general V region markers or whether they are unique to anti-alprenolol antibodies, we have extended our analysis to a random panel of antibodies that also use VH genes of the J558 family. Among 23 mAb of various specificities, 14 react with the anti-14C3 antiserum in immunoblot and in ELISA, irrespective of antibody specificity. Adsorption of the antiserum on one of these positive antibodies results in a loss of reactivity toward both anti-alprenolol and unrelated antibodies. Therefore, several but not all antibodies that use a J558 VH gene also express the complete set of epitopes defining ADC3. These results strongly suggest that ADC3 are markers of a subset of J558 VH gene products. The anti-14C3 antiserum may thus constitute a "serologic probe" for identification of a VH gene subgroup from the J558 gene family.  相似文献   

13.
The nucleotide sequences of the coding as well as the flanking regions of 11 A/J J558 heavy chain variable region (VH) gene segments are presented. Among these J558 VH segments was the unrearranged germline VH gene segment recruited in the predominant A strain-specific anti-arsonate response. Three other VH gene segments that are greater than 92% related to the p-azophenylarsenate (Ars) A VH gene segment were also isolated. Detailed analysis of the nucleotide sequences of these as well as the remaining seven J558 VH gene segments reveal that the J558 VH gene family is composed of distinct, but related, J558 VH subfamilies. Deletion mapping analyses were used to position the Ars A VH gene segment proximally with respect to the DH-JH clusters within the J558 VH gene family and distally with respect to its own J558 subfamily. The documentation of J558 VH subfamilies is discussed in the context of J558 VH family evolution and diversification.  相似文献   

14.
Although there is a nonrandom usage of VH gene families by primary B cells early in ontogeny, at issue is whether the preferential rearrangement of 3' germ-line VH genes, e.g., VH7183 and VHQ52 family genes, influences the neonatal B cell repertoire that can be expressed in response to Ag. In order to address this issue, and to determine whether neonatal B cells can use the same germ-line VH and V kappa genes as adult B cells in their primary response, we have analyzed at the molecular level the neonatal antibody response to (T,G)-A-L and compared it with the adult primary response. Among the TGB5 Id+, GT+ antibodies, which dominate the neonatal response to (T,G)-A-L, two VH gene families were used: J558 (high frequency) and 36-60 (low frequency). The majority of Id+ neonatal hybridomas used the same germ-line VH gene (H10, from the VHJ558 family), but with enormous diversity in the D region, and one of two germ-line V kappa 1 genes (V kappa 1A, V kappa 1C). These are the same germ-line V-genes used by most primary adult Id+ hybridomas, and the frequency of expression of this germ-line V-gene combination appears equivalent in the neonatal and adult primary repertoires. Therefore, it is clear from this study that as early as day 5, neonatal B cells can use the same germ-line V-genes as adult primary B cells in their Ag-specific repertoire.  相似文献   

15.
G A Rathbun  J D Capra    P W Tucker 《The EMBO journal》1987,6(10):2931-2937
Deletion mapping analyses have been employed to order the heavy chain variable region (VH) gene families in three inbred murine strains. These nine VH gene families have been positioned with respect to the J558 and 3660 VH families in A/J (Ighe) as follows: 3609-J558-(J606,VGAM3-8,S107)-3660-(X24,Q52,7183 )-DH. Maps generated with respect to J558 in the BALB/c (Igha) and C57BL/6 (Ighb) strains are consistent with these results. The organization of the VH complex produced by deletion mapping is quite different from the accepted map generated by other methods, particularly in that J558 is more DH distal and 3660 is more DH proximal than previously thought. The order presented here is compatible with VH rearrangement frequencies suggesting preferential utilization of DH-proximal VH gene segments. Our data also indicate that interspersion of some VH family members may be a common feature of the murine VH complex since the 3609 VH family is interdigitated in the three strains and a Q52 VH gene segment is interspersed in C57BL/6.  相似文献   

16.
Comparison of V kappa gene family expression in adult and fetal B cells   总被引:7,自引:0,他引:7  
The functional B cell repertoires from adult and fetal mice were compared by examining V kappa gene family expression in individual cells. In addition, because little is known about the relative use of the various V kappa gene families in an immune response, adult B cells from several different strains of mice were analyzed. This was accomplished by stimulating B cells with the polyclonal activator, LPS. Activated cells were then analyzed for V kappa gene family expression at the single cell level by in situ hybridization using radiolabeled V kappa gene probes. It was found that all V kappa gene families tested were represented in the LPS-induced adult repertoire with V kappa 1, V kappa 4,5 and V kappa 19 being expressed to the largest degree in all strains tested. The LPS-induced adult V kappa gene family repertoire was then compared to the fetal repertoire and some differences were observed. In particular, a lower proportion of fetal B cells expressed V kappa 1 and a higher proportion of fetal B cells expressed V kappa 4,5 and V kappa 10. Importantly, compared with the adult response there was no evidence in the fetal response for an increased expression of V kappa 21, the family that maps closest to J kappa,C kappa. This is in contrast to what has been shown previously with H chain V region exons in which there was a clear preference for the VH gene families that mapped closest to DH.  相似文献   

17.
The primary (1 degree) antibody response to (T,G)-A--L shows limited heterogeneity, consisting mostly of side chain-specific antibodies that bind GT and that express the TGB5 idiotype (Id). The secondary (2 degrees) response is very diverse: antibodies that bind the backbone A--L constitute a third of the response, and a high proportion of the side chain-specific antibodies do not bind GT and are TGB5 Id-. To provide a molecular basis for understanding this difference in repertoire expression, we analyzed the Ig genes used by heavy and light chains of 1 degree and 2 degrees side chain-specific anti-(T,G)-A--L hybridoma antibodies (HP). Southern blot restriction analysis and nucleotide sequence analysis of the expressed genes used by three TGB5 Id+ 2 degrees HP showed usage of three different VH genes in two VH gene families (36-60 and J558), different D segments, and two different Vk1 genes (the Vk1A and Vk1C subgroups). Thus, antibody heterogeneity in the 2 degrees response is contributed by combinatorial diversity of distinct germ-line genes. Nucleotide sequence analysis of the expressed genes used by TGB5 Id+ 1 degree HP showed use of highly homologous VH genes in the J558 VH gene family and highly homologous Vk1A genes. The majority of TGB5 Id+ 1 degree HP from different donors gave similar heavy and similar light chain gene rearrangements by Southern blot restriction analysis, after correction for known or potential J region differences. The combined nucleotide sequence and Southern blot restriction analysis data suggest that most 1 degree B cells use the same or very similar VH and Vk genes, i.e., the 1 degree response is paucigenic. Different D segments were used by the TGB5 Id+ 1 degree and 2 degrees HP that were sequenced, and there was no apparent correlation between TGB5 idiotypy and VH, D gene, or JH gene usage. However, all TGB5 Id+ HP sequenced used highly homologous genes from the Vk1 group. Expression of a Vk1 light chain correlates with, but is not sufficient for, TGB5 idiotypy, because one GT-binding, TGB5 Id- HP was found to use a Vk1C subgroup light chain. By Southern blot and nucleotide sequence analysis, the Vk genes used by two TGB5 Id+ 2 degrees HP from xid mice are highly homologous, if not identical to the Vk1A gene(s) used by 1 degree and 2 degrees Id+ HP from wild-type mice.  相似文献   

18.
With age, NZB mice develop anti-RBC autoantibodies resulting in the development of autoimmune hemolytic anemia. We now have evidence that this spontaneous autoantibody response consists of antibodies that are similar in specificity and Id expression to a pathogenic autoantibody (G8) that was cloned from an autoimmune NZB mouse. Similar to autoantibodies eluted from Coombs'-positive mouse E (MRBC), the G8 mAb recognizes native (unmodified) MRBC but not RBC from other species. Interestingly, G8 and four additional mAb bind with a higher titer to bromelain-treated MRBC than to native MRBC. Nucleotide sequence analysis reveals, however, that unlike "natural" antibodies that react solely with bromelain-MRBC, G8 is encoded by a J558 VH gene and a V kappa 12,13 L-chain gene. Thus G8 is clearly distinct from antibodies to bromelain-MRBC which are encoded by unrelated V genes. Instead, the sequence of the G8 VH chain was found to be nearly identical to that of an anti-DNA mAb derived from an MRL-lpr/lpr mouse. The results suggest Coombs'-positive autoantibodies from NZB mice are not derived from "natural" antibodies, but rather, consist of a restricted set of autoantibodies expressing the G8 IdX.  相似文献   

19.
Cloning and sequencing of the V regions of the anti-DNA monoclonal antibodies (mAbs), H438 and H130, indicate that H438 is encoded by a J558 VH gene, a single D region nucleotide, and unmutated JH1, V kappa-1C and J kappa 1 genes, and the H130 L chain is encoded by a V kappa-21 subgroup gene J kappa 1 gene. Identification of VH438, which shared VH hybridization pattern with 6% of a panel of 352 MRL/lpr hybridomas, suggests that the frequency of J558 use among spontaneously activated B cells in MRL/lpr mice is greater than previously reported. The VHH438 J558 family gene is identical to VHPAR, which encodes the independently derived MRL/lpr autoantibody, MRP-2, and is highly homologous to the previously reported VHH130, which is identical to a BALB/c germ-line VH gene. Comparison of consensus sequences of homologous autoantibodies and previously reported restriction mapping suggest that a minimum of three highly related J558 germ-line genes encode lupus autoantibodies.  相似文献   

20.
Ig VH repertoire differences between normal and x-linked immune deficiency- (xid) expressing mice are well established. To test the hypothesis that such differences might exist as early as the pre-B stage of ontogeny we generated panels of xid fetal liver derived Abelson murine leukemia virus transformants with H chain Ig VDJ rearrangements. Cells from CBA/Tufts.xid mice used VH genes from many families, with no demonstrable preference for 3' genes. Analysis of cells derived from (CBA/Tufts.xid X CBA/Tufts)F1 mice showed preferential usage of 3' family genes in the phenotypically normal females, even though V to DJ joins were made in vivo. The defective male mice did not show this marked preferential usage. A similar, but less marked, effect on VH gene usage was seen in mice with X-linked immune deficiency and a BALB/c background. Taken together, these results show that either X-linked immune deficiency, or a closely linked gene, affects fetal pre-B cells such that the usual pattern of predominant usage of 3' family genes is altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号