首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classical predator–prey and host–parasite systems have been extensively studied in a food web context. Less attention has been paid to communities that include pathogens and their vectors. We present a coarse-grained, pan-African analysis of the relationships between the abiotic environment (location, precipitation, temperature), the species richness and community composition of ixodid ticks, and the species richness and community composition of pathogens that ticks transmit to humans. We found strong correlations between the abiotic environment and tick species richness, and a weak but significant correlation between the abiotic environment and pathogen species richness. A substantial amount of variation in community composition of parasites and pathogens was not explained by the variables that we considered. A structural equation model that compensated for the indirect effects of climate on the pathogen community via tick community composition suggested that while the environment strongly regulates tick community composition and tick community composition strongly regulates pathogen community composition, abiotic influences on pathogen species richness and community composition are weak. Our results support the view that changes in the broader environment will influence tick-borne pathogens primarily via the influence of the environment on ticks. The interactions that regulate host–vector–pathogen dynamics are of particular relevance in understanding the relationships between environmental change and health concerns, such as the impact of climate change on the occurrence of vector-borne diseases.  相似文献   

2.
Selenium–Mercury Interactions in Man and Animals   总被引:4,自引:0,他引:4  
Selenium–mercury interactions were most extensively studied in relation to alleviation of Hg toxicity by added selenium. This presentation considers the influence of mercury on endogenous selenium, on its tissue and cellular “status” after lifelong or acute exposure to mercury vapor (Hgo). Discussed are data obtained from (1) humans living near or working in a mercury mine, and (2) rats experimentally exposed in the mine. Mercury vapor is unique—or similar to methylmercury—because of its ability to penetrate cell membranes and so invade all cells, where it is oxidized in the biologically active form (Hg++) by catalase. Such in situ-generated ions can react with endogenously generated highly reactive Se metabolites, like HSe−, and render a part of the selenium unavailable for selenoprotein synthesis. Data on human populations indicate that in moderate Hg exposure combined with an adequate selenium supply through diet, Se bioavailability can be preserved. On the other hand, the results of an acute exposure study emphasize the dual role of selenium in mercury detoxification. Besides the well-known Se coaccumulation through formation of nontoxic Hg–Se complexes, we observed noticeable Se (co)excretion, at least at the beginning of exposure. The higher Hg accumulation rate in the group of animals with lower basal selenium levels can also point to selenium involvement in mercury excretion. In such conditions there is a higher probability for decreased selenoprotein levels (synthesis) in some tissues or organs, depending on the synthesis hierarchy.  相似文献   

3.
A substantial and growing consumer demand exists for plant-based functional foods that improve general health and wellbeing. Amongst consumed phytochemicals, the polyphenolic compounds tend to be the most bioactive. Many commonly consumed polyphenols have been shown to have specific and potent health-promoting activities when assessed by high-throughput in vitro assays and when administered to experimental animals by injection. However, very few have been shown to have any beneficial effects in animals or man when orally consumed, because of the poor bioavailability exhibited by most polyphenols following the ingestion. Consumed polyphenols, like most pharmaceuticals, are regarded as xenobiotics by the body and must overcome many barriers, including extensive enzymatic and chemical modification during digestion and absorption, to reach their site(s) of action. This is especially true for polyphenols targeting the brain, which is protected by the tightly regulated blood–brain barrier. Interestingly, many polyphenols are also known to specifically modify some of the metabolic and transport processes that govern bioavailability. Therefore, the opportunity exists to increase the bioactivity of beneficial polyphenols by designing specific synergistic interactions with polyphenols that improve their oral bioavailability. This hypothesis and review paper will discuss some of the endogenous systems that limit the bioavailability of ingested polyphenols to the body and the brain, and the means by which bioavailability may be improved by specifically designing synergies between orally consumed polyphenols.  相似文献   

4.
A novel purple nonsulfur bacterium strain NKPB030619, which has resistance to over 5 mM selenite, was isolated from a marine environment. An initial concentration of 1.1 mM selenite, added to the medium, was decreased to under 0.05 mM within 5 days. The color of the cell suspension turned red within 2 days. The red coloration gradually decreased and black precipitates appeared during 2 weeks of cultivation. Under these conditions, two main types of deposit were formed extracellularly. These deposits were thought to contain red amorphous selenium and black vitreous selenium. The selenite reduction to elemental selenium in this bacterium was induced by the introduction of light and l-malic acid under anaerobic conditions. These results suggest that selenite reduction is coupled with photosynthesis and l-malic acid can serve as the indirect electron donor for its reduction. Phylogenetic analysis based on the 16S rDNA sequence showed that NKPB0360619 belongs to the α subdivision of Proteobacteria and is classified into the Rhodobacter species. The highest similarity of 86.2% was observed with R. sphaeroides. Received: 13 August 1996 / Received last revision: 6 May 1997 / Accepted: 11 May 1997  相似文献   

5.
介绍了硒元素对生物体的健康功效及不合理摄入硒对人体造成的危害,从硒在人体的吸收、转运角度解释了硒的生物利用率的含义,总结了硒在人体的吸收代谢情况、生物利用率的测定方法及当前研究现状、硒生物利用率的影响因素,初步得出补硒关键控制点,为提高硒的生物利用率提供理论依据。  相似文献   

6.
There is no data or literature on the effects of supplementing infants with yeast selenium, although its intestinal absorption and bioavailability are higher in adults compared with other selenium compounds. The aim of the present investigation was to study the impact of selenium enriched yeast on the serum selenium concentration of preterm infants living in a low selenium area (Hungary). Twenty-eight preterm infants with mean ± SD birth weight of 962 ± 129 g and gestational age 27 ± 1 wk were randomized into two groups at birth with respect to selenium supplementation. In the supplemented group (n = 14) infants received 4.8 mg yeast selenium containing 5 μg selenium daily via nasogastric drip during the first 14 postnatal days. The nonsupplemented infants were used as a reference group. In the supplemented group, the serum selenium concentration increased from 32.1 ± 8.5 μg/L to 41.5 ± 6.5 μg/L and in the nonsupplemented group it decreased from 25.9 ± 6.8 μg/L to 18.2 ± 6.4 μg/L from birth in two weeks time. Compared with previous studies, our results suggest that the bioavailability of selenium in the form of yeast selenium is higher than that of other selenium compounds used for preterm infants. We did not observe any complications or side-effects owing to enterai yeast selenium supplementation. We conclude that selenium enriched yeast is a safe and an effective form of short-term enterai selenium supplementation for infants.  相似文献   

7.
Selenium is an essential trace element for mammals. Through selenoproteins, this mineral participates in various biological processes such as antioxidant defence, thyroid hormone production, and immune responses. Some reports indicate that a human organism deficient in selenium may be prone to certain diseases. Adverse health effects following selenium overexposure, although very rare, have been found in animals and people. Contrary to selenium, arsenic and cadmium are regarded as toxic elements. Both are environmental and industrial pollutants, and exposure to excessive amounts of arsenic or cadmium can pose a threat to many people’s health, especially those living in polluted regions. Two other elements, vanadium and chromium(III) in trace amounts are believed to play essential physiological functions in mammals. This review summarizes recent studies on selenium interactions with arsenic and cadmium and selenium interactions with vanadium and chromium in mammals. Human studies have demonstrated that selenium may reduce arsenic accumulation in the organism and protect against arsenic-related skin lesions. Selenium was found to antagonise the prooxidant and genotoxic effects of arsenic in rodents and cell cultures. Also, studies on selenium effects against oxidative stress induced by cadmium in various animal tissues produced promising results. Reports suggest that selenium protection against toxicity of arsenic and cadmium is mediated via sequestration of these elements into biologically inert conjugates. Selenium-dependent antioxidant enzymes probably play a secondary role in arsenic and cadmium detoxification. So far, few studies have evaluated selenium effects on chromium(III) and vanadium actions in mammals. Still, they show that selenium may interact with these minerals. Taken together, the recent findings regarding selenium interaction with other elements extend our understanding of selenium biological functions and highlight selenium as a potential countermeasure against toxicity induced by arsenic and cadmium.  相似文献   

8.
Edwards TA  Wilson AJ 《Amino acids》2011,41(3):743-754
Protein–protein interactions (PPIs) play a central role in virtually all biological processes and have been the focus of intense investigation from structural molecular biology to cell biology for the majority of the last two decades and, more recently, are emerging as important targets for pharmaceutical intervention. A common motif found at the interface of PPIs is the α-helix, suggesting that, in the same way as the “lock and key” model has evolved for competitive inhibition of enzymes, it should be possible to elaborate “rule-based” approaches for inhibition of helix-mediated PPIs. This review will describe the biological function and structural features of a series of representative helix-mediated PPIs and discuss approaches that are being developed to target these interactions with small molecules that employ non-natural amino acids.  相似文献   

9.
The objective of the present work was to study all physiological relationships among selenium status (SeS), sex hormones secretion (SH), and thyroid metabolism (ThM) in healthy adolescent girls, at one time. Forty-four girls aged 13.4–16.6 years (mean age, 14.5 ± 0.5 years) entered the statistical model. Parameters reflecting SeS: plasma selenium concentration (Se) and plasma glutathione peroxidase activity (GPX3); SH: serum estradiol (E2) and progesterone (P4); age of menarche (AoM); and ThM: thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), antithyroid peroxidase antibodies (anti-TPO) in serum, and thyroid volume (ThV), were determined, and the interactions between them were evaluated by means of the partial least squares method (PLS). PLS method was, for the first time, successfully applied to the problem of selenium and hormone interactions and revealed that selenium status and female reproductive system are interrelated and affect thyroid physiology in adolescent girls in the luteal phase. The strongest associations were revealed for the pairs of parameters, Se and fT4/fT3, Se and P4, the modest ones for the pairs, Se and ThV, P4 and fT4/fT3, Se and AoM, and P4 and AoM. There was no correlation between E2, GPX3, and TSH, and any other considered parameter. Se and P4 had the greatest influence on ThM parameters.  相似文献   

10.
11.
One of the greatest current challenges in proteomics is to develop an understanding of cellular communication and regulation processes, most of which involve noncovalent interactions of proteins with various binding partners. Mass spectrometry plays an important role in all aspects of these research efforts. This article provides a survey of mass spectrometry-based approaches for exploring protein-ligand interactions. A wide array of techniques is available, and the choice of method depends on the specific problem at hand. For example, the high-throughput screening of compound libraries for binding to a specific receptor requires different approaches than structural studies on multiprotein complexes. This review is directed to readers wishing to obtain a concise yet comprehensive overview of existing experimental techniques. Specific emphasis is placed on emerging methods that have been developed within the last few years.  相似文献   

12.
One of the greatest current challenges in proteomics is to develop an understanding of cellular communication and regulation processes, most of which involve noncovalent interactions of proteins with various binding partners. Mass spectrometry plays an important role in all aspects of these research efforts. This article provides a survey of mass spectrometry-based approaches for exploring protein–ligand interactions. A wide array of techniques is available, and the choice of method depends on the specific problem at hand. For example, the high-throughput screening of compound libraries for binding to a specific receptor requires different approaches than structural studies on multiprotein complexes. This review is directed to readers wishing to obtain a concise yet comprehensive overview of existing experimental techniques. Specific emphasis is placed on emerging methods that have been developed within the last few years.  相似文献   

13.
Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus which is transmitted by blood-feeding gnats to wild and domestic ruminants, causing high morbidity and often high mortality. Partly due to this BTV has been in the forefront of molecular studies for last three decades and now represents one of the best understood viruses at the molecular and structural levels. BTV, like the other members of the Reoviridae family is a complex non-enveloped virus with seven structural proteins and a RNA genome consisting of 10 dsRNA segments of different sizes. In virus infected cells, three other virus encoded nonstructural proteins are synthesized. Significant recent advances have been made in understanding the structure–function relationships of BTV proteins and their interactions during virus assembly. By combining structural and molecular data it has been possible to make progress on the fundamental mechanisms used by the virus to invade, replicate in, and escape from, susceptible host cells. Data obtained from studies over a number of years have defined the key players in BTV entry, replication, assembly and egress. Specifically, it has been possible to determine the complex nature of the virion through three dimensional structure reconstructions; atomic structure of proteins and the internal capsid; the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell and the protein sequestration required for it; and the role of three NS proteins in virus replication, assembly and release. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.  相似文献   

14.
In climate change ecology, simplistic research approaches may yield unrealistically simplistic answers to often more complicated problems. In particular, the complexity of vegetation responses to global climate change begs a better understanding of the impacts of concomitant changes in several climatic drivers, how these impacts vary across different climatic contexts, and of the demographic processes underlying population changes. Using a replicated, factorial, whole‐community transplant experiment, we investigated regional variation in demographic responses of plant populations to increased temperature and/or precipitation. Across four perennial forb species and 12 sites, we found strong responses to both temperature and precipitation change. Changes in population growth rates were mainly due to changes in survival and clonality. In three of the four study species, the combined increase in temperature and precipitation reflected nonadditive, antagonistic interactions of the single climatic changes for population growth rate and survival, while the interactions were additive and synergistic for clonality. This disparity affects the persistence of genotypes, but also suggests that the mechanisms behind the responses of the vital rates differ. In addition, survival effects varied systematically with climatic context, with wetter and warmer + wetter transplants showing less positive or more negative responses at warmer sites. The detailed demographic approach yields important mechanistic insights into how concomitant changes in temperature and precipitation affect plants, which makes our results generalizable beyond the four study species. Our comprehensive study design illustrates the power of replicated field experiments in disentangling the complex relationships and patterns that govern climate change impacts across real‐world species and landscapes.  相似文献   

15.
Cross–scale interactions refer to processes at one spatial or temporal scale interacting with processes at another scale to result in nonlinear dynamics with thresholds. These interactions change the pattern–process relationships across scales such that fine-scale processes can influence a broad spatial extent or a long time period, or broad-scale drivers can interact with fine-scale processes to determine system dynamics. Cross–scale interactions are increasing recognized as having important influences on ecosystem processes, yet they pose formidable challenges for understanding and forecasting ecosystem dynamics. In this introduction to the special feature, “Cross–scale interactions and pattern–process relationships”, we provide a synthetic framework for understanding the causes and consequences of cross–scale interactions. Our framework focuses on the importance of transfer processes and spatial heterogeneity at intermediate scales in linking fine- and broad-scale patterns and processes. Transfer processes and spatial heterogeneity can either amplify or attenuate system response to broad-scale drivers. Providing a framework to explain cross–scale interactions is an important step in improving our understanding and ability to predict the impacts of propagating events and to ameliorate these impacts through proactive measures.  相似文献   

16.
Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.  相似文献   

17.
《MABS-AUSTIN》2013,5(4):445-457
During the past ten years, monoclonal antibodies (mAbs) have taken center stage in the field of targeted therapy and diagnosis. This increased interest in mAbs is due to their binding accuracy (affinity and specificity) together with the original molecular and structural rules that govern interactions with their cognate antigen. In addition, the effector properties of antibodies constitute a second major advantage associated with their clinical use. The development of molecular and structural engineering and more recently of in vitro evolution of antibodies has opened up new perspectives in the de novo design of antibodies more adapted to clinical and diagnostic use. Thus, efforts are regularly made by researchers to improve or modulate antibody recognition properties, to adapt their pharmacokinetics, engineer their stability, and control their immunogenicity. This review presents the latest molecular engineering results on mAbs with therapeutic and diagnostic applications.  相似文献   

18.
The trace element selenium is an essential micronutrient for human health and its low levels in serum are implicated in the pathogenesis of several chronic diseases. Therefore, the determination of total selenium in serum may contribute to the assessment of the health and nutritional status of certain populations. The objective of the present work was to determine total selenium in the serum of 506 healthy volunteers that participated in the ATTICA study. Selenium was determined in serum by using the technique of inductively coupled plasma mass spectrometry. The mean serum selenium concentration was determined to be 91.8 ± 33.7 μg/L (N = 506); 87.6% of women and 88.5% of men had serum selenium concentration below 125 μg/L, the cutoff considered to be required for optimal glutathione peroxidase activity. No association was found between serum selenium levels and the gender of the participants while a significant decline of selenium with age (p < 0.0001) was observed. According to our results, no anthropometric, lifestyle, nutritional, or biochemical indices were able to affect the association between serum selenium and age. This result may indicate that other factors such as selenium distribution as well as retention may be affecting the relationship between serum selenium and age.  相似文献   

19.
During the past ten years, monoclonal antibodies (mAbs) have taken center stage in the field of targeted therapy and diagnosis. This increased interest in mAbs is due to their binding accuracy (affinity and specificity) together with the original molecular and structural rules that govern interactions with their cognate antigen. In addition, the effector properties of antibodies constitute a second major advantage associated with their clinical use. The development of molecular and structural engineering and more recently of in vitro evolution of antibodies has opened up new perspectives in the de novo design of antibodies more adapted to clinical and diagnostic use. Thus, efforts are regularly made by researchers to improve or modulate antibody recognition properties, to adapt their pharmacokinetics, engineer their stability, and control their immunogenicity. This review presents the latest molecular engineering results on mAbs with therapeutic and diagnostic applications.  相似文献   

20.
Selenium helps protect against peroxidation during aging as part of the glutathione peroxidase (GPx) antioxidant system. Selenium status, however, is often low in elderly persons who have low selenium intake, live in institutions, and have certain chronic diseases. In addition, a relationship has been observed between the female reproductive hormone, estrogen, and selenium status, with blood selenium and GPx activity coinciding with fluctuations in estrogen during the menstrual cycle. These findings suggest that the decrease in estrogen following menopause may cause a decrease in selenium status, and thus accelerate the process of aging and increase the risk of certain diseases. The current study compared selenium status in healthy premenopausal (n = 13, 21 to 43 years) and postmenopausal (n = 10, 57 to 86 years) women. Selenium intakes of both groups were similar and greater than the recommended dietary allowance (RDA) of 55 μg/day for adult women. Although neither plasma nor RBC selenium concentrations were significantly different between groups, postmenopausal women had significantly greater plasma (p < 0.02), and RBC (p < 0.05) GPx activities compared to premenopausal women possibly in response to oxidative processes associated with aging. These results indicate that the selenium status of healthy postmenopausal women did not decline with menopause and that their antioxidant capability, as measured by GPx activity, was preserved with dietary intake of selenium greater than the RDA. Presented in part at the Experimental Biology 2000, April 2000, San Diego, CA [Smith AM, Ha EJ, Medeiros LC. Selenium-dependent glutathione peroxidase activity is increased in healthy post-menopausal women. FASEB J 2000;14:A513.].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号