首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the unique fully conserved tryptophan in metallopeptidase family M49 (dipeptidyl peptidase III family) was investigated by site-directed mutagenesis on human dipeptidyl peptidase III (DPP III) where Trp300 was subjected to two substitutions (W300F and W300L). The mutant enzymes showed thermal stability equal to the wild-type DPP III. Conservative substitution of the Trp300 with phenylalanine decreased enzyme activity 2-4 fold, but did not significantly change the Km values for two dipeptidyl 2-naphthylamide substrates. However, the Km for the W300L mutant was elevated 5-fold and the kcat value was reduced 16-fold with Arg-Arg-2-naphthylamide. Both substitutions had a negative effect on the binding of two competitive inhibitors designed to interact with S1 and S2 subsites.These results indicate the importance of the aromatic nature of W300 in DPP III ligand binding and catalysis, and contribution of this residue in maintaining the functional integrity of this enzyme’s S2 subsite.  相似文献   

2.
Yamamoto T  Chen HC  Guigard E  Kay CM  Ryan RO 《Biochemistry》2008,47(44):11647-11652
The release of ligand from the low-density lipoprotein receptor (LDLR) has been postulated to involve a "histidine switch"-induced intramolecular rearrangement that discharges bound ligand. A recombinant soluble low-density lipoprotein receptor (sLDLR) was employed in ligand binding experiments with a fluorescently tagged variant apolipoprotein E N-terminal domain (apoE-NT). Binding was monitored as a function of fluorescence resonance energy transfer (FRET) from excited Trp residues in sLDLR to an extrinsic fluorophore covalently attached to Trp-null apoE3-NT. In binding experiments with wild-type (WT) sLDLR, FRET-dependent AEDANS fluorescence decreased as the pH was lowered. To investigate the role of His190, His562, and His586 in sLDLR in pH-dependent ligand binding and discharge, site-directed mutagenesis studies were performed. Compared to WT sLDLR, triple His --> Ala mutant sLDLR displayed attenuated pH-dependent ligand binding and a decreased level of ligand release as a function of low pH. When these His residues were substituted for Lys, the positively charged side chain of which does not ionize over this pH range, ligand binding was nearly abolished at all pH values. When sequential His to Lys mutants were examined, the evidence suggested that His562 and His586 function cooperatively. Whereas the sedimentation coefficient for WT sLDLR increased when the pH was reduced from 7 to 5, no such change occurred in the case of the triple Lys mutant receptor or a His562Lys/His586Lys double mutant receptor. The data support the existence of a cryptic, histidine side chain ionization-dependent alternative ligand that modulates ligand discharge via conformational reorganization.  相似文献   

3.
Abstract Human dipeptidyl peptidase III (DPP III) is a member of the metallopeptidase family M49 with an implied role in the pain-modulatory system and endogenous defense against oxidative stress. Here, we report the heterologous expression of human DPP III and the site-directed mutagenesis results which demonstrate a functional role for Tyr318 at the active site of this enzyme. The substitution of Tyr318 to Phe decreased kcat by two orders of magnitude without altering the binding affinity of substrate, or of a competitive hydroxamate inhibitor designed to interact with S1 and S2 subsites. The results indicate that the conserved tyrosine could be involved in transition state stabilization during the catalytic action of M49 peptidases.  相似文献   

4.
Dipeptidyl peptidases III (DPPs III) form a distinct metallopeptidase family characterized by the unique HEXXGH motif. High susceptibility to inactivation by organomercurials suggests the presence of a reactive cysteine residue(s) in, or close to, their active site. Yeast DPP III contains five Cys, none of which is absolutely conserved within the family. In order to identify reactive residue(s), site-directed mutagenesis on yeast His6-tagged DPP III was employed to substitute specifically all five cysteine residues to serine. The variant enzymes thus obtained were enzymatically active and showed an overall structure not greatly affected by the mutations as judged by circular dichroism. Analysis by native and SDS-PAGE under non-reducing conditions revealed the existence of a monomeric and dimeric form in all DPP III proteins except in the C130S, implying that dimerization of yeast DPP III is mediated by the surface-exposed cysteine 130.  相似文献   

5.
Amino acid residues in the ligand binding pocket of human neuroglobin have been identified by site-directed mutagenesis and their properties investigated by resonance Raman and flash photolysis methods. Wild-type neuroglobin has been shown to have six-coordinate heme in both ferric and ferrous states. Substitution of His96 by alanine leads to complete loss of heme, indicating that His96 is the proximal ligand. The resonance Raman spectra of M69L and K67T mutants were similar to those of wild-type (WT) neuroglobin in both ferric and ferrous states. By contrast, H64V was six-coordinate high-spin and five-coordinate high-spin in the ferric and ferrous states, respectively, at acidic pH. The spectra were pH-dependent and six-coordinate with the low-spin component dominating at alkaline pH. In a double mutant H64V/K67T, the high-spin component alone was detected in the both ferric and the ferrous states. This implies that His64 is the endogenous ligand and that Lys67 is situated nearby in the distal pocket. In the ferrous H64V and H64V/K67T mutants, the nu(Fe-His) stretching frequency appears at 221 cm(-1), which is similar to that of deoxymyoglobin. In the ferrous CO-bound state, the nu(Fe-CO) stretching frequency was detected at 521 and 494 cm(-1) in WT, M69L, and K67T, while only the 494 cm(-1) component was detected in the H64V and H64V/K67T mutants. Thus, the 521 cm(-1) component is attributed to the presence of polar His64. The CO binding kinetics were biphasic for WT, H64V, and K67T and monophasic for H64V/K67T. Thus, His64 and Lys67 comprise a unique distal heme pocket in neuroglobin.  相似文献   

6.
The role of the HELLGH (residues 450-455) motif in the sequence of rat dipeptidyl peptidase III (EC 3.4.14.4) was investigated by replacing Glu451 with an alanine or an aspartic acid residue and by replacing His450 and His455 with a tyrosine residue by site-directed mutagenesis. Mutated cDNAs were expressed three or four times in Escherichia coli, and the resulting proteins were purified to apparent homogeneity. None of the expressed mutated proteins exhibited DPP III activity. The mutants of Glu451 contained 1 mol of zinc per mole of protein, but mutants His450 and His455 did not contain significant amounts of zinc as determined by atomic absorption spectrometry. The Leu453-deleted enzyme (having the zinc aminopeptidase motif HExxH-18-E) had almost the same order of binding affinity (for Arg-Arg-2-naphthylamide) as the wild-type enzyme, but the specificity constant was about 10%. These results provide evidence that the suitable number of amino acids included between Glu451 and His455 is three residues for the enzyme activity and confirm that residues His450, His455, and Glu451 are involved in zinc coordination and catalytic activity.  相似文献   

7.
Annexin II heterotetramer (AIIt) is a multifunctional Ca(2+)-binding protein composed of two 11-kDa subunits and two annexin II subunits. The annexin II subunit contains three type II and two type III Ca(2+)-binding sites which are thought to regulate the interaction of AIIt with anionic phospholipid, F-actin, and heparin. In the present study we utilized site-directed mutagenesis to create AIIt mutants with inactive type III (TM AIIt), type II (CM AIIt), and both type II and III Ca(2+)-binding sites (TCM AIIt). Surprisingly, we found that in the presence of Ca(2+), the TM, CM, and TCM AIIt bound phospholipid and F-actin with similar affinity to the wild type AIIt (WT AIIt). Furthermore, the TCM mutant, and to a lesser extent the TM and CM AIIt displayed dose-dependent Ca(2+)-independent phospholipid aggregation and binding. While the TM and CM AIIt demonstrated Ca(2+)-dependent binding to F-actin, the binding of the TCM AIIt was Ca(2+)-independent. These results suggest that the type II or type III Ca(2+)-binding sites do not directly participate in anionic phospholipid or F-actin binding. We therefore propose that in the absence of Ca(2+), the type II and type III Ca(2+)-binding sites of AIIt stabilize a conformation of AIIt that is unfavorable for binding phospholipid and F-actin. Ca(2+) binding to these sites, or the inactivation of these Ca(2+)-binding sites by site-directed mutagenesis, results in a conformational change that promotes binding to anionic phospholipid and F-actin. Since the TM, CM, and TCM AIIt require Ca(2+) for binding to heparin, we also propose that novel Ca(2+)-binding sites regulate this binding event.  相似文献   

8.
Heme-regulated eIF2alpha kinase (HRI) is an important enzyme that modulates protein synthesis during cellular emergency/stress conditions, such as heme deficiency in red cells. It is essential to identify the heme axial ligand(s) and/or binding sites to establish the heme regulation mechanism of HRI. Previous reports suggest that a His residue in the N-terminal region and a Cys residue in the C-terminal region trans to the His are axial ligands of the heme. Moreover, mutational analyses indicate that a residue located in the kinase insertion (KI) domain between Kinase I and Kinase II domains in the C-terminal region is an axial ligand. In the present study, we isolate the KI domain of mouse HRI and employ site-directed mutagenesis to identify the heme axial ligand. The optical absorption spectrum of the Fe(III) hemin-bound wild-type KI displays a broad Soret band at around 373nm, while that of the Fe(II) heme-bound protein contains a band at 422nm. Spectral titration studies conducted for both the Fe(III) hemin and Fe(II) heme complexes with KI support a 1:1 stoichiometry of heme iron to protein. Resonance Raman spectra of Fe(III) hemin-bound KI suggest that thiol is the axial ligand in a 5-coordinate high-spin heme complex as a major form. Electron spin resonance (ESR) spectra of Fe(III) hemin-bound KI indicate that the axial ligands are OH(-) and Cys. Since Cys385 is the only cysteine in KI, the residue was mutated to Ser, and its spectral characteristics were analyzed. The Soret band position, heme spectral titration behavior and ESR parameters of the Cys385Ser mutant were markedly different from those of wild-type KI. Based on these spectroscopic findings, we conclude that Cys385 is an axial ligand of isolated KI.  相似文献   

9.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

10.
Brosius JL  Colman RF 《Biochemistry》2002,41(7):2217-2226
Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.  相似文献   

11.
Ligand specificity of odorant receptors   总被引:1,自引:0,他引:1  
Odorant receptors belong to class A of the G protein-coupled receptors (GPCRs) and detect a large number of structurally diverse odorant molecules. A recent structural bioinformatic analysis suggests that structural features are conserved across class A of GPCRs in spite of their low sequence identity. Based on this work, we have aligned the sequences of 29 ORs for which ligand binding data are available. Recent site-directed mutagenesis experiments on one such receptor (MOR174-9) provide information that helped to identify nine amino-acid residues involved in ligand binding. Our modeling provides a rationale for amino acids in equivalent positions in most of the odorant receptors considered and helps to identify other amino acids that could be important for ligand binding. Our findings are consistent with most of the previous models and allow predictions for site-directed mutagenesis experiments, which could also validate our model.  相似文献   

12.
Faithful genetic code translation requires that each aminoacyl-tRNA synthetase recognise its cognate amino acid ligand specifically. Aspartyl-tRNA synthetase (AspRS) distinguishes between its negatively-charged Asp substrate and two competitors, neutral Asn and di-negative succinate, using a complex network of electrostatic interactions. Here, we used molecular dynamics simulations and site-directed mutagenesis experiments to probe these interactions further. We attempt to decrease the Asp/Asn binding free energy difference via single, double and triple mutations that reduce the net positive charge in the active site of Escherichia coli AspRS. Earlier, Glutamine 199 was changed to a negatively-charged glutamate, giving a computed reduction in Asp affinity in good agreement with experiment. Here, Lysine 198 was changed to a neutral leucine; then, Lys198 and Gln199 were mutated simultaneously. Both mutants are predicted to have reduced Asp binding and improved Asn binding, but the changes are insufficient to overcome the initial, high specificity of the native enzyme, which retains a preference for Asp. Probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments, we found no detectable activity for the mutant enzymes, indicating weaker Asp binding and/or poorer transition state stabilization. The simulations show that the mutations' effect is partly offset by proton uptake by a nearby histidine. Therefore, we performed additional simulations where the nearby Histidines 448 and 449 were mutated to neutral or negative residues: (Lys198Leu, His448Gln, His449Gln), and (Lys198Leu, His448Glu, His449Gln). This led to unexpected conformational changes and loss of active site preorganization, suggesting that the AspRS active site has a limited structural tolerance for electrostatic modifications. The data give insights into the complex electrostatic network in the AspRS active site and illustrate the difficulty in engineering charged-to-neutral changes of the preferred ligand.  相似文献   

13.
Mutation of Asp(2.61(98)) at the extracellular boundary of transmembrane helix 2 of the gonadotropin-releasing hormone (GnRH) receptor decreased the affinity for GnRH. Using site-directed mutagenesis, ligand modification, and computational modeling, different side chain interactions of Asp(2.61(98)) that contribute to high-affinity binding were investigated. The conservative Asp(2. 61(98))Glu mutation markedly decreased the affinity for a series of GnRH analogues containing the native His(2) residue. This mutant showed smaller decreases in affinity for His(2)-substituted ligands. The loss of preference for His(2)-containing ligands in the mutant receptor shows that Asp(2.61(98)) determines the specificity for His(2). Analysis of the affinities of a series of position 2-substituted ligands suggests that a hydrogen bond forms between Asp(2.61(98)) and the delta NH group of His(2) and that Asp(2. 61(98)) forms a second hydrogen bond with the ligand. Substitution of Asp(2.61(98)) with an uncharged residue further decreased the affinity for all ligands and also decreased receptor expression. Computational modeling indicates an intramolecular ionic interaction of Asp(2.61(98)) with Lys(3.32(121)) in transmembrane helix 3. The uncharged, Lys(3.32(121))Gln mutation also markedly decreased agonist affinity. The modeling and the similar phenotypes of mutants with uncharged substitutions for Asp(2.61(98)) or Lys(3.32(121)) are consistent with the presence of this helix 2-helix 3 interaction. These studies support a dual role for Asp(2.61(98)): formation of an interhelical interaction with Lys(3.32(121)) that contributes to the structure of the agonist binding pocket and an interaction with His(2) of GnRH that helps stabilize agonist complexing.  相似文献   

14.
15.
Manganese peroxidase (MnP) is a heme-containing enzyme produced by white-rot fungi and is part of the extracellular lignin degrading system in these organisms. MnP is unique among Mn binding enzymes in its ability to bind and oxidize Mn(II) and efficiently release Mn(III). Initial site-directed mutagenesis studies identified the residues E35, E39, and D179 as the Mn binding ligands. However, an E39D variant was recently reported to display wild-type Mn binding and rate of oxidation, calling into question the role of E39 as an Mn ligand. To investigate this hypothesis, we performed computer modeling studies which indicated metal-ligand bond distances in the E39D variant and in an E35D--E39D--D179E triple variant which might allow Mn binding and oxidation. To test the model, we reconstructed the E35D and E39D variants used in the previous study, as well as an E39A single variant and the E35D--E39D--D179E triple variant of MnP isozyme 1 from Phanerochaete chrysosporium. We find that all of the variant proteins are impaired for Mn(II) binding (K(m) increases 20--30-fold) and Mn(II) oxidation (k(cat) decreases 50--400-fold) in both the steady state and the transient state. In particular, mutation of the E39 residue in MnP decreases both Mn binding and oxidation. The catalytic efficiency of the E39A variants decreased approximately 10(4)-fold, while that of the E39D variant decreased approximately 10(3)-fold. Contrary to initial modeling results, the triple variant performed only as well as any of the single Mn ligand variants. Interestingly, the catalytic efficiency of the triple variant decreased only 10(4)-fold, which is approximately 10(2)-fold better than that reported for the E35Q--D179N double variant. These combined studies indicate that precise geometry of the Mn ligands within the Mn binding site of MnP is essential for the efficient binding, oxidation, and release of Mn by this enzyme. The results clearly indicate that E39 is a Mn ligand and that mutation of this ligand decreases both Mn binding and the rate of Mn oxidation.  相似文献   

16.
Marko Tomin  Sanja Tomić 《Proteins》2019,87(5):390-400
Aflatoxin oxidase (AFO), an enzyme isolated from Armillariella tabescens, has been reported to degrade aflatoxin B1 (AFB1). However, recent studies reported sequence and structure similarities with the dipeptidyl peptidase III (DPP III) family of enzymes and confirmed peptidase activity toward DPP III substrates. In light of these investigations, an extensive computational study was performed in order to improve understanding of the AFO functions. Steered MD simulations revealed long-range domain motions described as protein opening, characteristic for DPPs III and necessary for substrate binding. Newly identified open and partially open forms of the enzyme closely resemble those of the human DPP III orthologue. Docking of a synthetic DPP III substrate Arg2-2-naphthylamide revealed a binding mode similar to the one found in crystal structures of human DPP III complexes with peptides with the S1 and S2 subsites’ amino acid residues conserved. On the other hand, no energetically favorable AFB1 binding mode was detected, suggesting that aflatoxins are not good substrates of AFO. High plasticity of the zinc ion coordination sphere within the active site, consistent with that of up to date studied DPPs III, was observed as well. A detailed electrostatic analysis of the active site revealed a predominance of negatively charged regions, unsuitable for the binding of the neutral AFB1. The present study is in line with the most recent experimental study on this enzyme, both suggesting that AFO is a typical member of the DPP III family.  相似文献   

17.
Lee BK  Lee YH  Hauser M  Son CD  Khare S  Naider F  Becker JM 《Biochemistry》2002,41(46):13681-13689
To identify interactions between Ste2p, a G protein-coupled receptor of the yeast Saccharomyces cerevisiae, and its tridecapeptide ligand, alpha-factor (WHWLQLKPGQPMY), a variety of alpha-factor analogues were used in conjunction with site-directed mutagenesis of a targeted portion of Ste2p transmembrane domain six. Alanine substitution of residues in the 262-270 region of Ste2p did not affect pheromone binding or signal transduction, except for the Y266A mutant, which did not transduce signal yet exhibited only a small decrease in alpha-factor binding affinity. Substitutions with Ser, Leu, or Lys at Y266 also generated signaling-defective receptors. In contrast, Phe or Trp substitution at Y266 retained receptor function, suggesting that aromaticity at this position was critical. When coexpressed with WT receptor, the Y266A receptor exhibited a strong dominant-negative phenotype, indicating that this mutant bound G protein. A partial tryptic digest revealed that, in the presence of agonist, a different digestion profile for Y266A receptor was generated in comparison to that for WT receptor. The difference in trypsin-sensitive sites and their negative dominance indicated that the Y266A receptor was not able to switch into an "activated" conformation upon ligand binding. In comparison to WT Ste2p, the mutantY266A receptor showed increased binding affinity for N-terminal, alanine-substituted alpha-factor analogues (residues 1-4) and the antagonist [desW(1),desH(2)]alpha-factor. A substantial decrease in affinity was observed for alpha-factor analogues with Ala substitutions from residues 5-13. The results suggest that Y266 is part of the binding pocket that recognizes the N-terminal portion of alpha-factor and is involved in the transformation of Ste2p into an activated state upon agonist binding.  相似文献   

18.
Previous structural studies based on the co-crystal of a complex between bovine pancreatic deoxyribonuclease I (bpDNase I) and a double-stranded DNA octamer d(GCGATCGC)(2) have suggested the presence of a putative secondary active site near Ser43. In our present study, several crucial amino acid residues postulated in this putative secondary active site, including Thr14, Ser43, and His44 were selected for site-directed mutagenesis. A series of single, double and triple mutants were thus constructed and tested for their DNase I activity by hyperchromicity assay. Substitution of each or both of Thr14 and Ser43 by alanine results in mutant enzymes retaining 30-70% of WT bpDNase I activity. However, when His44 was replaced by aspartic acid, either in the single, double, or triple mutant, the enzyme activities were drastically decreased to 0.5-5% that of WT bpDNase I. Interestingly, when cysteine was substituted for Thr14 or Ser43, the specific DNase activities of the mutant enzymes were substantially increased by 1.5-100-fold, comparing to their alanine substitution mutant counterparts. Two other more sensitive DNase activity assay method, plasmid scission and zymogram analyses further confirm these observations. These results suggested that His44 may play a critical role in substrate DNA binding in this putative secondary active site, and introduction of sulfhydryl groups at Thr14 and Ser43 may facilitate Mn(2+)-coordination and further contribute to the catalytic activity of bpDNase I.  相似文献   

19.
Endopeptidase EC 3.4.24.15 (EP24.15) is a zinc metalloendopeptidase that is broadly distributed within the brain, pituitary, and gonads. Its substrate specificity includes a number of physiologically important neuropeptides such as neurotensin, bradykinin, and gonadotropin-releasing hormone, the principal regulatory peptide for reproduction. In studying the structure and function of EP24.15, we have employed in vitro mutagenesis and subsequent protein expression to genetically dissect the enzyme and allow us to glean insight into the mechanism of substrate binding and catalysis. Comparison of the sequence of EP24.15 with bacterial homologues previously solved by x-ray crystallography and used as models for mammalian metalloendopeptidases, indicates conserved residues. The active site of EP24.15 exhibits an HEXXH motif, a common feature of zinc metalloenzymes. Mutations have confirmed the importance, for binding and catalysis, of the residues (His473, Glu474, and His477) within this motif. A third putative metal ligand, presumed to coordinate directly to the active site zinc ion in concert with His473 and His477, has been identified as Glu502. Conservative alterations to these residues drastically reduces enzymatic activity against both a putative physiological substrate and a synthetic quenched fluorescent substrate as well as binding of the specific active site-directed inhibitor, N-[1-(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, the binding of which we have shown to be dependent upon the presence, and possibly coordination, of the active site zinc ion. These studies contribute to a more complete understanding of the catalytic mechanism of EP24.15 and will aid in rational design of inhibitors and pharmacological agents for this class of enzymes.  相似文献   

20.
We performed molecular modeling and docking to predict a putative binding pocket and associated ligand–receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号