首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost‐effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress (τy) of the slurries were measured. The saccharified stover liquefies to the point of being pourable (τy ≤ 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi‐empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high‐solids loadings. Biotechnol. Bioeng. 2009; 104: 290–300 © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Particle size associated with accessible surface area has a significant impact on the saccharification of plant cell walls by cellulolytic enzymes. Small particle sizes of untreated cellulosic substrate are more readily hydrolyzed than large ones because of higher specific surface area. Pretreatment enlarges accessible and susceptible surface area leading to enhanced cellulose hydrolysis. These hypotheses were tested using ground corn stover in the size ranges of 425-710 and 53-75 microm. Ultrastructural changes in these particles were imaged after treatment with cellulolytic enzymes before and after liquid hot water pretreatment. The smaller 53-75 microm corn stover particles are 1.5x more susceptible to hydrolysis than 425-710 microm corn stover particles. This difference between the two particle size ranges is eliminated when the stover is pretreated with liquid hot water pretreatment at 190 degrees C for 15 min, at pH between 4.3 and 6.2. This pretreatment causes ultrastructural changes and formation of micron-sized pores that make the cellulose more accessible to hydrolytic enzymes.  相似文献   

3.
Enzymatic hydrolysis of biomass is an established method for producing biofuels. Lignocellulosic biomass such as corn stover is very inhomogeneous material with big variation on conversion rates between individual particles therefore leading to variable recalcitrance results. In this study, we used noninvasive optical microscopy techniques, such as two-photon microscopy and fluorescence lifetime imaging microscopy, to visualize and analyze morphological and chemical changes of individual corn stover particles pretreated with sulfuric acid during hydrolysis. Morphochemical changes were interpreted based on the fluorescence properties of isolated building blocks of plant cell wall, such as cellulose, hemicellulose, and lignin. Enzymatic hydrolysis resulted in particle size reduction, side wall collapse, decrease of second harmonic signal from cellulose, redshifting of autofluorescence emission, and lifetime decrease attributed to the relative increase of lignin. Based on these observations, tracking compositional change after hydrolysis of individual particles was accomplished. The methodologies developed offer a paradigm for imaging and analyzing enzymatic hydrolysis in vitro and in situ, which could be used for screening enzymes cocktails targeting specific recalcitrant structures or investigating locally enzyme anti-inhibitory agents.  相似文献   

4.
5.
Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties.  相似文献   

6.
Mechanical refining results in fiber deconstruction and modifications that enhance enzyme accessibility to carbohydrates. Further understanding of the morphological changes occurring to biomass during mechanical refining and the impacts of these changes on enzymatic digestibility is necessary to maximize yields and reduce energy consumption. Although the degree of fiber length reduction relative to fibrillation/delamination can be impacted by manipulating refining variables, mechanical refining of any type (PFI, disk, and valley beater) typically results in both phenomena. Separating the two is not straightforward. In this study, fiber fractionation based on particle size performed after mechanical refining of high-lignin pulp was utilized to successfully elucidate the relative impact of fibrillation/delamination and fiber cutting phenomena during mechanical refining. Compositional analysis showed that fines contain significantly more lignin than larger size fractions. Enzymatic hydrolysis results indicated that within fractions of uniform fiber length, fibrillation/delamination due to mechanical refining increased enzymatic conversion by 20–30 percentage points. Changes in fiber length had little effect on digestibility for fibers longer than ~0.5 mm. However, the digestibility of the fines fractions was high for all levels of refining even with the high-lignin content.  相似文献   

7.
The influence of concentration (mass and volume fraction) and particle morphology on the yielding properties of filamentous broths ofAspergillus niger and Strepto-myces levoris was investigated using the rotating vane technique and compared with those of pulp suspensions. Two methods were applied to determine the volume fraction of the cells growing in filamentous form: the measurement of interstitial volume using a high molecular weight dye or dextran, and the measurement of dewatered broth filter cake volume by displacement using a pycnometer. The latter method provided the most reliable results. Cell concentrations ranging from 3 to 20 g dw/L, with corresponding volume fractions between 0.005 and 0.05, were obtained with broths generated in stirred tank and shake flask fermentations. The yield stress values obtained using the vane technique (0.1 相似文献   

8.
Until now, most efforts to improve monosaccharide production from biomass through pretreatment and enzymatic hydrolysis have used empirical optimization rather than employing a rational design process guided by a theory‐based modeling framework. For such an approach to be successful a modeling framework that captures the key mechanisms governing the relationship between pretreatment and enzymatic hydrolysis must be developed. In this study, we propose a pore‐hindered diffusion and kinetic model for enzymatic hydrolysis of biomass. When compared to data available in the literature, this model accurately predicts the well‐known dependence of initial cellulose hydrolysis rates on surface area available to a cellulase‐size molecule. Modeling results suggest that, for particles smaller than 5 × 10?3 cm, a key rate‐limiting step is the exposure of previously unexposed cellulose occurring after cellulose on the surface has hydrolyzed, rather than binding or diffusion. However, for larger particles, according to the model, diffusion plays a more significant role. Therefore, the proposed model can be used to design experiments that produce results that are either affected or unaffected by diffusion. Finally, by using pore size distribution data to predict the biomass fraction that is accessible to degradation, this model can be used to predict cellulose hydrolysis with time using only pore size distribution and initial composition data. Biotechnol. Bioeng. 2013; 110: 127–136. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Experiments were conducted to measure optical backscatter and beam transmission of suspensions of 180, 150 and 90 μm sand, and 40 μm clay, in a recirculation tank designed to house an optical backscatterance sensor (O.B.S.) and a beam transmissometer. Particle size was determined using gravimetric techniques and Coulter counter. By contriving known sediment distributions from the fractionated sediment samples, it was found that both the O.B.S. and beam transmissometer responded approximately linearly to narrow band and broad band particle suspensions. The beam transmissometer showed greater sensitivity to the fine-grain fraction of a poly-disperse suspension than the O.B.S.  相似文献   

10.
选择2013年新收获的玉米品种坤臻(糯玉米)、正大999和百农5号,编号为K01、K02和K03,探讨粉碎粒度、储藏温度和储藏时间对不同品种的玉米样品中赖氨酸含量的影响。结果表明:粉碎粒度试验中,K01、K02和K03玉米样品分别经过20目、40目、60目和80目筛处理时,样品过40目或80目筛时赖氨酸含量都相对较高;单因素分析储藏温度(10℃、20℃和30℃)和储藏时间(2、4、6、8个月)对赖氨酸含量的影响时,随着储藏温度的升高和储藏时间的延长,K01、K02和K03样品中赖氨酸含量都有不同程度的下降,其中储藏时间对赖氨酸含量的影响较大,储藏温度次之,储藏8个月时,K01、K02和K03样品中的赖氨酸含量分别下降33.3%、37.1%和39.4%。  相似文献   

11.
不同土地利用方式下不同粒径土壤有机碳含量的变化可以在一定程度上反映土壤碳的变化,对揭示土壤有机碳循环过程具有重要意义.本研究在长期水土流失监测的基础上,采用土壤颗粒分级的方法,以南方红壤丘陵区不同土地利用方式(荒地、松林、草地)坡地土壤为研究对象,探讨了不同土地利用方式对不同粒径土壤有机碳分布特征的影响及其与草本生物量的关系.结果表明:土地利用方式和坡位对不同粒径土壤有机碳含量的影响较明显,研究区不同粒径土壤有机碳含量均表现为草地>松林>荒地;不同粒径土壤有机碳所占比例主要取决于土地利用方式,与坡位关系不大;由颗粒有机碳/矿物结合态有机碳(POC/MOC)值可知,草地土壤有机碳较易矿化,而荒地和松林土壤有机碳较稳定;红壤丘陵区坡地土壤砂粒有机碳对草本生物量的影响较大.  相似文献   

12.
We investigated the effect of temperature and wing morphology on the quantitative genetic variances and covariances of five size-related traits in the sand cricket, Gryllus firmus. Micropterous and macropterous crickets were reared in the laboratory at 24, 28 and 32 degrees C. Quantitative genetic parameters were estimated using a nested full-sib family design, and (co)variance matrices were compared using the T method, Flury hierarchy and Jackknife-manova method. The results revealed that the mean phenotypic value of each trait varied significantly among temperatures and wing morphs, but temperature reaction norms were not similar across all traits. Micropterous individuals were always smaller than macropterous individuals while expressing more phenotypic variation, a finding discussed in terms of canalization and life-history trade-offs. We observed little variation between the matrices of among-family (co)variation corresponding to each combination of temperature and wing morphology, with only one matrix of six differing in structure from the others. The implications of this result are discussed with respect to the prediction of evolutionary trajectories.  相似文献   

13.
Selenium (Se) is an essential micronutrient for animals and humans, and wheat is a major dietary source of this element. It is improtant that postharvest processing losses of grain Se are minimized. This study, using grain dissection, milling with a Quadrumat mill, and baking and toasting studies, investigated the distribution of Se and other mineral nutrients in wheat grain and the effect of postharvest processing on their retention. The dissection study, although showing Se concentration to be highest in the embryo, confirmed (along with the milling study) previous findings that Se (which occurs mostly as selenomethionine in wheat grain) and S are more evenly distributed throughout the grain when compared to other mineral nutrients, and hence, lower proportions are removed in the milling residue. Postmilling processing did not affect Se concentration or content of wheat products in this study. No genotypic variability was observed for grain distribution of Se in the dissection and milling studies, in contrast to Cu, Fe., Mn, and Zn. This variability could be exploited in breeding for higher proportions of these nutrients in the endosperm to make white flour more nutritious. Further research could include grain dissection and milling studies using larger numbers of cultivars that have been grown together and a flour, extraction rate of around 70%  相似文献   

14.
Climate warming and harvesting affect the dynamics of species across the globe through a multitude of mechanisms, including distribution changes. In fish, migrations to and distribution on spawning grounds are likely influenced by both climate warming and harvesting. The Northeast Arctic (NEA) cod (Gadus morhua) performs seasonal migrations from its feeding grounds in the Barents Sea to spawning grounds along the Norwegian coast. The distribution of cod between the spawning grounds has historically changed at decadal scales, mainly due to variable use of the northern and southern margins of the spawning area. Based on historical landing records, two major hypotheses have been put forward to explain these changes: climate and harvesting. Climate could affect the distribution through, for example, spatial habitat shifts. Harvesting could affect the distribution through impacting the demographic structure. If demographic structure is important, theory predicts increasing spawner size with migration distance. Here, we evaluate these hypotheses with modern data from a period (2000–2016) of increasing temperature and recovering stock structure. We first analyze economic data from the Norwegian fisheries to investigate geographical differences in size of spawning fish among spawning grounds, as well as interannual differences in mean latitude of spawning in relation to changes in temperature and demographic parameters. Second, we analyze genetically determined fish sampled at the spawning grounds to unambiguously separate between migratory NEA cod and potentially smaller sized coastal cod of local origin. Our results indicate smaller spawners farther away from the feeding grounds, hence not supporting the hypothesis that harvesting is a main driver for the contemporary spawning ground distribution. We find a positive correlation between annual mean spawning latitude and temperature. In conclusion, based on contemporary data, there is more support for climate compared to harvesting in shaping spawning ground distribution in this major fish stock in the North Atlantic Ocean.  相似文献   

15.
水肥耦合对欧美108杨幼林表土层细根形态及分布的影响   总被引:1,自引:0,他引:1  
采用根钻法对水肥耦合条件下(地表滴灌和随水施肥)欧美108杨幼林(Populus×euramericana cv.‘Guariento’)林地0—30 cm表土层细根形态及分布进行了系统研究。田间试验设计3个灌溉水平(灌溉土壤水势起始阈值为-75、-50、-25 k Pa)和3个养分水平(施N150、300、450 g株-1a-1),组合成9个水肥耦合处理,另设1个对照处理(CK)。研究结果表明:(1)垂直方向上,10个处理下欧美108杨幼林细根生物量、表面积、体积和根长密度均随着土壤深度的增加而递减(且多数处理达到显著水平),而比根长则在低水和中水处理下表现出0—10 cm土层显著小于10—20 cm和20—30 cm土层,在高水和CK处理下各土层之间差异不显著(P0.05)。从表征细根分布特征的多数指标来看,水肥耦合没有改变欧美108杨幼林细根的垂直分布格局,其细根主要分布在0—10cm土层,该层生物量和根长密度分别是10—20 cm土层的1.25—5.05倍和1.05—2.05倍、分别是20—30 cm土层的2.8—13.06倍和1.99—4.99倍。(2)欧美108杨幼林细根生物量、根长密度、表面积和体积均表现出:低肥量下的3个滴灌水平处理均与CK无显著差异,中肥和高肥量下的6个处理均显著大于CK,尤其高水高肥处理促进细根生长的效果最显著,其3个土层细根生物量较CK分别显著提高了316%、386%和442%,根长密度较CK分别显著提高了345%、176%、132%(P0.05);各处理比根长均随着滴灌和施肥量的增加而减小。(3)同一滴灌水平下各土层细根生物量随施肥量变化的回归方程拟合具有较高R2(0.702—0.891),P0.0001,而同一施肥水平下各土层细根生物量随滴灌量变化的回归方程拟合度较低,说明欧美108杨幼林细根的趋肥性强于向水性,故在对其水肥经营管理中应该将施肥措施放在首位。  相似文献   

16.
The specific activity of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) (CKX) was determined in leaves of wild type (wt) and ethylene-insensitive mutant (eti5) of Arabidopsis thaliana (L.) Heynh plants. Comparative studies showed that this mutation has lower basal CKX activity than wt. Application of 4PU-30 (N1-(2-chloro-4-pyridyl)-N2-phenylurea) resulted in decreased CKX activity in both wt and mutant plants. The treatment increased leaf blade thickness and the volume of chlorophyll-containing cells per unit leaf area in wt but these changes were not observed in the eti5 mutant. The reduction in chlorophyll “a” and “b”, as well as in carotenoids content in the treated wt tissues resulting from altered leaf morphology was not detected in eti5 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号