首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To clarify whether gender-related differences exist in the expression and function of hepatic P-glycoprotein- and/or multidrug resistance-associated protein (Mrp2), we measured the hepatobiliary excretion of doxorubicin and their protein levels in male and female Sprague-Dawley rats. When rats received a single intravenous injection of doxorubicin (5 mg/kg), a delay in the disappearance of doxorubicin from plasma was observed in male rats. When rats received a constant-rate infusion of doxorubicin, no significant gender-related differences in the apparent biliary clearance of doxorubicin based on the steady state plasma concentrations were observed between male and female rats. However, the net biliary clearance of doxorubicin based on the liver concentration, which represents the actual function of P-glycoprotein and/or Mrp2, was higher in female rats than in male rats. These results suggest that the actual function of the hepatobiliary transport of doxorubicin is greater in female than in male rats. Western blot analysis revealed that the expression of P-glycoprotein and Mrp2 in the liver of female rats was significantly higher than in male rats, similar to results of hepatobiliary excretion experiments. The expression of hepatic cytochrome P450 (CYP) 2B1, which is involved in the metabolism of doxorubicin, was significantly higher in male than in female rats. By pretreatment with testosterone (10 mg/day for 7 days), the actual biliary clearance of doxorubicin in female rats was nearly that of male rats. The protein levels of P-glycoprotein and Mrp2 in female rats were also lowered by treatment with testosterone so as to be nearer those in male rats. These results suggest that gender-related differences exist in P-glycoprotein- and Mrp2-mediated hepatobiliary transport and that these two transporters may be regulated by sex hormones.  相似文献   

2.
Benzylpenicillin (PCG; 180 micromol/kg), a classic beta-lactam antibiotic, was intravenously given to Sprague-Dawley (SD) rats and multidrug resistance-associated protein 2 (Mrp2)-deficient Eisai hyperbilirubinemic rats (EHBR). A percentage of the [(3)H]PCG was excreted into the bile of the rats within 60 min (SD rats: 31.7% and EHBR: 4.3%). Remarkably, a transient increase in the bile flow ( approximately 2-fold) and a slight increase in the total biliary bilirubin excretion were observed in SD rats but not in the EHBR after PCG administration. This suggests that the biliary excretion of PCG and its choleretic effect are Mrp2-dependent. Positive correlations were observed between the biliary excretion rate of PCG and bile flow (r(2) = 0.768) and more remarkably between the biliary excretion rate of GSH and bile flow (r(2) = 0.968). No ATP-dependent uptake of [(3)H]PCG was observed in Mrp2-expressing Sf9 membrane vesicles, whereas other forms of Mrp2-substrate transport were stimulated in the presence of PCG. GSH efflux mediated by human MRP2 expressed in Madin-Darby canine kidney II cells was enhanced in the presence of PCG in a concentration-dependent manner. In conclusion, the choleretic effect of PCG is caused by the stimulation of biliary GSH efflux as well as the concentrative biliary excretion of PCG itself, both of which were Mrp2 dependent.  相似文献   

3.
Flavopiridol (FLAP) is a novel anticancer agent that is extensively glucuronidated in patients. Biliary excretion is the main elimination pathway of FLAP conjugates responsible for enterohepatic recirculation and for the main side effect diarrhea. To investigate the hepatic transport system for FLAP glucuronides, livers of Wistar and Mrp2-deficient TR- rats were perfused with FLAP (30 microM) in a single pass system. Biliary excretion and efflux into perfusate during a 60 min period greatly differ in TR- rats. While cumulative biliary excretion of M1 and M2 was significantly reduced to 4.3% and 5.4% efflux into perfusate was increased by 1.5 and 4.2-fold. This indicates that in control rats, M1 and M2 are almost exclusively eliminated into bile by Mrp2. Cumulative FLAP secretion into bile and perfusate, however, was non-significantly reduced by 36.7% and 43.2% in the mutant rat strain, suggesting that besides Mrp2, other transporters might also be involved in FLAP elimination. FLAP stimulates bile flow up to 24% in control rats, but secretion is nearly absent in TR- rats further supporting an efficient transport of FLAP glucuronides by Mrp2. FLAP (30 microM) also reversibly inhibited the Mrp2-mediated biliary elimination of bilirubin and bromsulphthalein in Wistar rats by 54% and 51%, respectively, indicating a competition with the elimination of Mrp2-specific substrates. In summary, we found that FLAP glucuronides are substrates of Mrp2 effectively inhibiting the biliary excretion of bilirubin. This may explain the increased serum bilirubin levels observed in cancer patients during FLAP therapy.  相似文献   

4.
The expression of hepatic multidrug resistance-associated protein (Mrp)1, 2, 3, and 6 and organic anion transporting polypeptides (Oatp)1 and 2 were examined in control and 20- to 21-day pregnant rats. Western analysis showed that expression of Oatp2 was decreased 50% in pregnancy, whereas expression of Oatp1 did not change. Expression of Mrp2 protein determined by Western analysis of total liver homogenate decreased to 50% of control levels in pregnant rats, consistent with studies using plasma membranes. Confocal immunohistochemistry showed that Mrp2 expression was confined to the canalicular membrane in both control and pregnant rats and was not detectable in intracellular compartments. In isolated perfused liver, the biliary excretion of 2,4-dintrophenyl-glutathione was significantly decreased in pregnancy, consistent with decreased expression of Mrp2. The expression of the basolateral transporter Mrp1 was not altered in pregnancy, whereas expression of Mrp6 mRNA was decreased by 60%. Expression of Mrp3 was also decreased by 50% in pregnant rat liver, indicating differential regulation of Mrp isoforms in pregnancy. These data also demonstrate that decreased Mrp2 expression is not necessarily accompanied by increased Mrp3 expression.  相似文献   

5.
Multidrug resistance protein 2 (Mrp2) is considered the major mammalian membrane transporter of non-bile salt organic anions from liver to bile. Using Mrp2-deficient rats, we show that the protein is not essential for biliary excretion of biliverdin, its IIIalpha and XIIIalpha isomers, mesobiliverdin XIIIalpha or biliverdins bearing bulky lipophilic groups that are not reduced by biliverdin reductase in vivo. Yet, Mrp2 deficiency does retard the biliary excretion of these verdins to different degrees. The data indicate that there are Mrp2-independent mechanisms in the rat for biliary excretion of dicarboxylate organic anions related to biliverdin.  相似文献   

6.
Estradiol-17beta-D-glucuronide (E2-17G) induces a marked but reversible inhibition of bile flow in the rat together with endocytic retrieval of multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane to intracellular structures. We analyzed the effect of pretreatment (100 min) with the microtubule inhibitor colchicine or lumicholchicine, its inactive isomer (1 micromol/kg iv), on changes in bile flow and localization and function of Mrp2 induced by E2-17G (15 micromol/kg iv). Bile flow and biliary excretion of bilirubin, an endogenous Mrp2 substrate, were measured throughout, whereas Mrp2 localization was examined at 20 and 120 min after E2-17G by confocal immunofluorescence microscopy and Western analysis. Colchicine pretreatment alone did not affect bile flow or Mrp2 localization and activity over the short time scale examined (3-4 h). Administration of E2-17G to colchicine-pretreated rats induced a marked decrease (85%) in bile flow and biliary excretion of bilirubin as well as internalization of Mrp2 at 20 min. These alterations were of a similar magnitude as in rats pretreated with lumicolchicine followed by E2-17G. Bile flow and Mrp2 localization and activity were restored to control levels within 120 min of E2-17G in animals pretreated with lumicolchicine. In contrast, in colchicine-pretreated rats followed by E2-17G, bile flow and Mrp2 activity remained significantly inhibited by 60%, and confocal and Western studies revealed sustained internalization of Mrp2 120 min after E2-17G. We conclude that recovery from E2-17G cholestasis, associated with exocytic insertion of Mrp2 in the canalicular membrane, but not its initial E2-17G-induced endocytosis, is a microtubule-dependent process.  相似文献   

7.
The biliary excretion of the sodium salts of 8-(2-ethanesulfonic acid)-3-ethyl-2,7,9-trimethyl-1,10-dihydro-11H-dipyrrin-1-one (xanthosulfonic acid) and a fluorescent analogue (8-desethyl-N,N'-carbonyl-kryptopyrromethenone-8-sulfonic acid) was compared in Mrp2-deficient (TR(-)) and normal rats. Both organic anions were excreted rapidly in bile in Mrp2-deficient rats, but the biliary excretion of the fluorescent sulfonate was impaired relative to normal controls. The rat clearly has efficient Mrp2-independent mechanisms for biliary efflux of these anions that are not used by bilirubin or its mono- and diglucuronides.  相似文献   

8.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

9.
The objective was to determine whether protective effects of JBP485 on biliary obstruction induced by alpha-naphthylisothiocyanate (ANIT) are mediated by the organic anion transporters Oat1, Oat3 and the multidrug resistance-associated protein Mrp2. The ANIT-induced increases in bilirubin (BIL), alanine aminotransferase (ALT) and aspartate transaminase (AST) in rat serum were inhibited significantly by oral administration of JBP485. The plasma concentration of JBP485 which is the substrate of Oat1 and Oat3 determined by LC–MS/MS was markedly increased after intravenous administration in ANIT-treated rats, whereas cumulative urinary excretion of JBP485 in vivo and the uptake of JBP485 in kidney slices were decreased remarkably. RT-PCR and Western blot showed the decreased expression of Oat1 and Oat3, increased expression of Mrp2 in ANIT-induced rats, meanwhile, the expression levels of Mrp2 and Oat1 were up-regulated after administration of JBP485. The up-regulation of Mrp2 and Oat1 was associated with a concomitant increase in urinary BIL after treatment with JBP485 in ANIT-treated rats. The mechanism for JBP485 to restore liver function might be related to improvement of the expression and function for Oat1 and Mrp2 as well as facilitation of urinary excretion for hepatoxic substance.  相似文献   

10.
Estrogen‐induced cholestasis is characterized by impaired hepatic uptake and biliary bile acids secretion because of changes in hepatocyte transporter expression. The induction of heme oxygenase‐1 (HMOX1), the inducible isozyme in heme catabolism, is mediated via the Bach1/Nrf2 pathway, and protects livers from toxic, oxidative and inflammatory insults. However, its role in cholestasis remains unknown. Here, we investigated the effects of HMOX1 induction by heme on ethinylestradiol‐induced cholestasis and possible underlying mechanisms. Wistar rats were given ethinylestradiol (5 mg/kg s.c.) for 5 days. HMOX1 was induced by heme (15 μmol/kg i.p.) 24 hrs prior to ethinylestradiol. Serum cholestatic markers, hepatocyte and renal membrane transporter expression, and biliary and urinary bile acids excretion were quantified. Ethinylestradiol significantly increased cholestatic markers (P ≤ 0.01), decreased biliary bile acid excretion (39%, P = 0.01), down‐regulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2, P ≤ 0.05), and up‐regulated Mrp3 (348%, P ≤ 0.05). Heme pre‐treatment normalized cholestatic markers, increased biliary bile acid excretion (167%, P ≤ 0.05) and up‐regulated hepatocyte transporter expression. Moreover, heme induced Mrp3 expression in control (319%, P ≤ 0.05) and ethinylestradiol‐treated rats (512%, P ≤ 0.05). In primary rat hepatocytes, Nrf2 silencing completely abolished heme‐induced Mrp3 expression. Additionally, heme significantly increased urinary bile acid clearance via up‐regulation (Mrp2/Mrp4) or down‐regulation (Mrp3) of renal transporters (P ≤ 0.05). We conclude that HMOX1 induction by heme increases hepatocyte transporter expression, subsequently stimulating bile flow in cholestasis. Also, heme stimulates hepatic Mrp3 expression via a Nrf2‐dependent mechanism. Bile acids transported by Mrp3 to the plasma are highly cleared into the urine, resulting in normal plasma bile acid levels. Thus, HMOX1 induction may be a potential therapeutic strategy for the treatment of ethinylestradiol‐induced cholestasis.  相似文献   

11.
Multidrug resistance-associated protein 3 (Mrp3/ABCC3), which can mediate the cellular extrusion of bile acids, is induced on the hepatic sinusoidal membrane of Mrp2/ABCC2-deficient rats (Eisai hyperbilirubinemic rats; EHBRs) and phenobarbital-treated Sprague-Dawley rats. In the present study, the correlation between the sinusoidal efflux clearance (PS(eff)) of [3H]taurocholate (TC) and the hepatic expression of Mrp3 was investigated using perfused liver from these rats. A significant correlation was observed between the PS(eff) and the hepatic expression level of Mrp3, suggesting a contribution by Mrp3 to the sinusoidal efflux of TC. The results of the kinetic analysis also suggested that other transporter(s) on the sinusoidal plasma membrane may participate in the efflux of TC under physiological conditions. The contribution of Mrp3 to the sinusoidal efflux of TC in EHBRs and phenobarbital (80 and 40 mg/kg)-treated rats was revealed to be 58%, 48%, and 31%, respectively.  相似文献   

12.
The metabolism and biliary excretion of a stretched bilirubin analog with a p-xylyl group replacing the central CH2 hinge were investigated in normal rats, Gunn rats deficient in bilirubin conjugation, and TR- rats deficient in bilirubin glucuronide hepatobiliary transport. Unlike bilirubin, the analog was excreted rapidly in bile unchanged in all three rat strains after intravenous administration. In TR- rats biliary excretion of the analog was diminished, but still substantial, demonstrating that the ATP-binding cassette transporter Mrp2 is not required for its hepatic efflux. These effects are attributable to differences in the preferred conformations of bilirubin and the analog.  相似文献   

13.
Multidrug resistance protein Mrp2 (symbol Abcc2) in liver plays a significant role in the biliary excretion of organic anionic conjugates. Mutations in human MRP2 result in defects in excretion of conjugated bilirubin and other cholephiles known as the Dubin-Johnson syndrome. Previous studies indicate that transporters with Mrp2-like functions are present in ancient vertebrates. We have now characterized an Mrp2 ortholog at the molecular level from the liver of the small skate, Raja erinacea, a marine vertebrate that evolved approximately 200 million years ago. The full-length skate Mrp2 cDNA is 6 kb and encodes for a 1,564-amino acid peptide with 56% identity to human Mrp2. Northern blot analysis demonstrated that skate Mrp2 is abundantly expressed in skate liver, intestine, and kidney. Immunoblots reveal a 180-kDa protein in skate liver. Immunofluorescence studies locate skate Mrp2 to the apical membrane of hepatocytes, renal tubules, and intestine. A PDZ-interacting motif is also found at its COOH terminus. Further sequence analysis indicates that transmembrane domains 1, 9, 11, 16, and 17 are the most highly conserved transmembrane domains between skate Mrp2 and mammalian MRP2/Mrp2s. This analysis indicates that Mrp2 orthologs evolved early in vertebrate evolution and that conserved domains may be important determinants of Mrp2 substrate specificity.  相似文献   

14.
To determine which efflux carriers are involved in hepatic phalloidin elimination, hepatobiliary [(3)H]-demethylphalloin (DMP) excretion was studied in normal Wistar rats and in Mrp2 deficient TR(-) Wistar rats as well as in normal wild-type FVB mice, Mdr1a,b(-/-) knockout mice, and Bcrp1(-/-) knockout mice by in situ bile duct/gallbladder cannulation. A subtoxic dose of 0.03 mg DMP/kg b.w. was used, which did not induce cholestasis in any tested animal. Excretion of DMP into bile was not altered in Mdr1a,b(-/-) mice or in Bcrp1(-/-) mice compared with wild-type FVB mice. Whereas 17.6% of the applied dose was excreted into bile of normal Wistar rats, hepatobiliary excretion decreased to 7.9% in TR(-) rats within 2 h after intravenous application. This decrease was not due to reduced cellular DMP uptake, as shown by normal expression of Oatp1b2 in livers of TR(-) rats and functional DMP uptake into isolated TR(-) rat hepatocytes. Tissue concentrations of phalloidin were also not altered in any of the transgenic mice. Interestingly, the decrease of biliary DMP excretion in the TR(-) rats was not followed by any increase of phalloidin accumulation in the liver but yielded a compensatory excretion of the toxin into urine, indicating that hepatocytes of TR(-) rats expelled phalloidin back into blood circulation.  相似文献   

15.
Oxidative stress in the liver is sometimes accompanied by cholestasis. We investigated the localization and role of multidrug-resistance-associated protein (Mrp) 2, a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress. Normal Sprague-Dawley rat (SDR) and Mrp2-deficient Eisai hyperbilirubinemic rat (EHBR) livers were perfused with 500 microM EA. The release of glutamic pyruvic transaminase (GPT) and thiobarbituric-acid-reactive substances (TBARS) from EHBR liver was markedly delayed compared with that from SDR liver. This is mainly due to the higher basal level of glutathione (GSH) in EHBR liver (59.1 +/- 0.3 nmol/mg protein) compared with SDR liver (39.7 +/- 1.5 nmol/mg protein). EA similarly induced a rapid reduction in GSH followed by mitochondrial permeability transition in the isolated mitochondria from both SDR and EHBR. Internalization of Mrp2 was detected before nonspecific disruption of the canalicular membrane and GPT release in SDR liver perfused with 100 microM EA. SDR liver preperfused with hyperosmolar buffer (405 mosmol/L) for 30 min induced internalization of Mrp2 without changing the basal GSH level, while elimination of hepatic GSH by 300 microM EA perfusion was significantly delayed thereafter. Concomitantly, hepatotoxicity assessed by the release of GPT and TBARS was also significantly attenuated under hyperosmolar conditions. In conclusion, preserved cytosolic and intramitochondrial GSH is the key factor involved in the acute hepatotoxicity induced by EA and its susceptibility could be altered by the presence of Mrp2.  相似文献   

16.
Bilirubin and other cholephilic organic anions are bound to albumin in the circulation; their hepatic uptake involves a carrier-mediated process. To investigate the possible role of serum albumin in the transhepatic transport of a cholephilic ligand, plasma clearance of radioactive bilirubin and its biliary excretion as well as its interaction with plasma proteins were compared between normal and mutant analbuminemic rats (NAR). With a tracer amount of 3H-labeled bilirubin, its plasma clearance and biliary excretion were comparable in both animal groups. However, the plasma clearance of a loading dose of the ligand was significantly increased and its biliary recovery was low in NAR as compared with normal animals. In accord with these findings in vivo, gel permeation chromatographic analysis revealed that the bilirubin binding capacity of serum proteins was significantly lower in NAR than in control animals. When bilirubin was administered to NAR as a mixture with equimolar albumin, its plasma disappearance was considerably decreased and its biliary recovery was increased. Similar effects were observed when albumin was replaced by an equimolar amount of glutathione S-transferases (ligandins). These observations indicate that, although ligand-protein interaction in the circulation is important for directing bilirubin to the plasma membranes of the hepatocyte, this mechanism is not specific for albumin.  相似文献   

17.
Phloracetophenone (2,4,6-trihydroxyacetophenone, THA) is a potent choleretic in the bile fistula rat, although the mechanism is unknown. In the present study, we examined how THA enhances bile secretion. Stepwise infusions of THA (1-4 micromol/min) in the isolated perfused rat liver resulted in an immediate and dose-dependent increase in bile flow (BF), which reached saturation. The increase in BF was not associated with a change in the excretion of bile acids, suggesting that THA stimulated bile acid-independent bile flow. To further define the mechanism, the effect of THA on the excretion of sulfobromophthalein (BSP) and disulfobromophthalein (DBSP), typical multidrug resistance protein-2 (Mrp2) substrates was examined. THA inhibited the biliary excretion of both substrates. Because DBSP is excreted without conjugation to glutathione, in contrast to BSP, the findings suggest that THA might compete with DBSP and BSP metabolites at a common canalicular transport site, presumably Mrp2. THA infusions had no effect on the subcellular localization and distribution of either Mrp2 or the bile salt export pump (Bsep), nor the integrity of the tight junction. In contrast, the choleretic activity of THA was completely absent in the TR(-) rat, an animal model that lacks Mrp2, directly implicating this canalicular export pump as the mechanisms by which THA is excreted in bile. THA also partially reversed the cholestatic effects of estradiol-17beta-D-glucuronide, a process also dependent on Mrp2. In conclusion, the choleretic activity of THA and its possible metabolites is dependent on Mrp2. THA appears to stimulate BF by its osmotic effects and may attenuate the cholestatic effects of hepatotoxins undergoing biotransformation and excretion via similar pathways.  相似文献   

18.
To determine which efflux carriers are involved in hepatic phalloidin elimination, hepatobiliary [3H]-demethylphalloin (DMP) excretion was studied in normal Wistar rats and in Mrp2 deficient TR(−) Wistar rats as well as in normal wild-type FVB mice, Mdr1a,b(−/−) knockout mice, and Bcrp1(−/−) knockout mice by in situ bile duct/gallbladder cannulation. A subtoxic dose of 0.03 mg DMP/kg b.w. was used, which did not induce cholestasis in any tested animal. Excretion of DMP into bile was not altered in Mdr1a,b(−/−) mice or in Bcrp1(−/−) mice compared with wild-type FVB mice. Whereas 17.6% of the applied dose was excreted into bile of normal Wistar rats, hepatobiliary excretion decreased to 7.9% in TR(−) rats within 2 h after intravenous application. This decrease was not due to reduced cellular DMP uptake, as shown by normal expression of Oatp1b2 in livers of TR(−) rats and functional DMP uptake into isolated TR(−) rat hepatocytes. Tissue concentrations of phalloidin were also not altered in any of the transgenic mice. Interestingly, the decrease of biliary DMP excretion in the TR(−) rats was not followed by any increase of phalloidin accumulation in the liver but yielded a compensatory excretion of the toxin into urine, indicating that hepatocytes of TR(−) rats expelled phalloidin back into blood circulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号