共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Liu Y Gao W Wang Y Wu L Liu X Yan T Alm E Arkin A Thompson DK Fields MW Zhou J 《Journal of bacteriology》2005,187(7):2501-2507
Whole-genomic expression patterns were examined in Shewanella oneidensis cells exposed to elevated sodium chloride. Genes involved in Na(+) extrusion and glutamate biosynthesis were significantly up-regulated, and the majority of chemotaxis/motility-related genes were significantly down-regulated. The data also suggested an important role for metabolic adjustment in salt stress adaptation in S. oneidensis. 相似文献
4.
5.
6.
7.
Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificities that reduce the S and R stereoisomers of methionine sulfoxide (MetSO), respectively, and together function as critical antioxidant enzymes. In some pathogenic and metal-reducing bacteria, these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from S. oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM), while only partial repair is observed using both MsrA and MsrB enzymes together at 25 degrees C. A restoration of the normal protein fold is observed co-incident with the repair of MetSO in oxidized CaM (CaMox by MsrBA, as monitored by time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in CaMox is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in a 1 order of magnitude rate enhancement in comparison to those of the individual MsrA or MsrB enzyme alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation. 相似文献
8.
Deutschbauer A Price MN Wetmore KM Shao W Baumohl JK Xu Z Nguyen M Tamse R Davis RW Arkin AP 《PLoS genetics》2011,7(11):e1002385
Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. 相似文献
9.
10.
11.
12.
Elias DA Tollaksen SL Kennedy DW Mottaz HM Giometti CS McLean JS Hill EA Pinchuk GE Lipton MS Fredrickson JK Gorby YA 《Archives of microbiology》2008,189(4):313-324
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous
and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput
technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This
study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks,
on the reproducibility of global proteome measurements in Shewanella
oneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in
shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate
reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with
data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation
for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality
samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research. 相似文献
13.
AIM: To determine if the outer membrane (OM) cytochromes of the metal-reducing bacterium Shewanella oneidensis MR-1 are exposed on the cell surface. METHODS AND RESULTS: MR-1 cells were incubated with proteinase K or buffer and the resulting degradation of the OM cytochromes was examined by Western blotting. The periplasmic fumarate reductase (control) was not degraded. The OM cytochromes OmcA and OmcB were significantly degraded by proteinase K (71 and 31%, respectively). Immunofluorescence confirmed a prominent cell surface exposure of OmcA and a partial exposure of OmcB and the noncytochrome OM protein MtrB. CONCLUSIONS: The cytochromes OmcA and OmcB are exposed on the outer face of the OM. SIGNIFICANCE AND IMPACT OF THE STUDY: The cell surface exposure of these cytochromes could allow them to directly contact extracellular insoluble electron acceptors (e.g. manganese oxides) and is consistent with their in vivo role. 相似文献
14.
Chun Kiat Ng Jiabao Xu Zhao Cai Liang Yang Ian P. Thompson Wei E. Huang Bin Cao 《Microbial biotechnology》2020,13(6):1904-1916
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3ʹ-5ʹ) cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria. 相似文献
15.
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process. 相似文献
16.
17.
Ashley R. Brown Elon Correa Yun Xu Najla AlMasoud Simon M. Pimblott Royston Goodacre Jonathan R. Lloyd 《PloS one》2015,10(6)
Biogeochemical processes mediated by Fe(III)-reducing bacteria such as Shewanella oneidensis have the potential to influence the post-closure evolution of a geological disposal facility for radioactive wastes and to affect the solubility of some radionuclides. Furthermore, their potential to reduce both Fe(III) and radionuclides can be harnessed for the bioremediation of radionuclide-contaminated land. As some such sites are likely to have significant radiation fluxes, there is a need to characterise the impact of radiation stress on such microorganisms. There have, however, been few global cell analyses on the impact of ionizing radiation on subsurface bacteria, so here we address the metabolic response of S. oneidensis MR-1 to acute doses of X-radiation. UV/Vis spectroscopy and CFU counts showed that although X-radiation decreased initial viability and extended the lag phase of batch cultures, final biomass yields remained unchanged. FT-IR spectroscopy of whole cells indicated an increase in lipid associated vibrations and decreases in vibrations tentatively assigned to nucleic acids, phosphate, saccharides and amines. MALDI-TOF-MS detected an increase in total protein expression in cultures exposed to 12 Gy. At 95 Gy, a decrease in total protein levels was generally observed, although an increase in a putative cold shock protein was observed, which may be related to the radiation stress response of this organism. Multivariate statistical analyses applied to these FT-IR and MALDI-TOF-MS spectral data suggested that an irradiated phenotype developed throughout subsequent generations. This study suggests that significant alteration to the metabolism of S. oneidensis MR-1 is incurred as a result of X-irradiation and that dose dependent changes to specific biomolecules characterise this response. Irradiated S. oneidensis also displayed enhanced levels of poorly crystalline Fe(III) oxide reduction, though the mechanism underpinning this phenomenon is unclear. 相似文献
18.
Carpentier W Sandra K De Smet I Brigé A De Smet L Van Beeumen J 《Applied and environmental microbiology》2003,69(6):3636-3639
Shewanella oneidensis couples anaerobic oxidation of lactate, formate, and pyruvate to the reduction of vanadium pentoxide (V(V)). The bacterium reduces V(V) (vanadate ion) to V(IV) (vanadyl ion) in an anaerobic atmosphere. The resulting vanadyl ion precipitates as a V(IV)-containing solid. 相似文献
19.