首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an important human pathogen. The production of several virulence factors by P. aeruginosa is controlled through two quorum-sensing systems, las and rhl. We have obtained evidence that both the las and rhl quorum-sensing systems are also required for type 4 pilus-dependent twitching motility and infection by the pilus-specific phage D3112cts. Mutants which lack the ability to synthesize PAI-1, PAI-2, or both autoinducers were significantly or greatly impaired in twitching motility and in susceptibility to D3112cts. Twitching motility and phage susceptibility in the autoinducer-deficient mutants were partially restored by exposure to exogenous PAI-1 and PAI-2. Both twitching motility and infection by pilus-specific phage are believed to be dependent on the extension and retraction of polar type 4 pili. Western blot analysis of whole-cell lysates and enzyme-linked immunosorbent assays of intact cells were used to measure the amounts of pilin on the cell surfaces of las and rhl mutants relative to that of the wild type. It appears that PAI-2 plays a crucial role in twitching motility and phage infection by affecting the export and assembly of surface type 4 pili. The ability of P. aeruginosa cells to adhere to human bronchial epithelial cells was also found to be dependent on the rhl quorum-sensing system. Microscopic analysis of twitching motility indicated that mutants which were unable to synthesize PAI-1 were defective in the maintenance of cellular monolayers and migrating packs of cells. Thus, PAI-1 appears to have an essential role in maintaining cell-cell spacing and associations required for effective twitching motility.  相似文献   

3.
4.
5.
6.
7.
New signal molecules on the quorum-sensing block: response   总被引:1,自引:0,他引:1  
  相似文献   

8.
Abstract

Streptococcal infections are common in human and antibiotics are frequently prescribed in clinical practice. However, infections caused by drug-resistant strains are particularly difficult to treat using common antibiotics. Hence, there is an urgent need for new antibiotics. Quorum sensing is a regulatory mechanism involving cell communication that is thought to play an important role in various bacterial infections, including those caused by Streptococcus. The ATP-binding cassette transporter ComA of Streptococcus is essential for quorum-sensing signal production. The inhibition of the ComA peptidase domain (ComA PEP) suppresses the quorum-sensing pathway and resulting changes in phenotype and/or behavior. Using virtual screening and molecular dynamics simulations, two promising candidate compounds, ZINC32918029 and ZINC6751571, were found. These compounds had similar binding modes and interactions to the experimentally determined reference inhibitor 6CH. However, a significantly stronger negative binding energy was achieved (?113.501?±?15.312?KJ/mol and ?103.153?±?11.912?KJ/mol for ZINC32918029 and ZINC6751571, respectively). Molecular dynamics simulations also revealed that ZINC32918029 and ZINC6751571 had a strong affinity for ComA PEP. These results indicate that ZINC32918029 and ZINC6751571 are promising candidate inhibitors of the Streptococcus quorum-sensing pathway.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
TraR is a LuxR-type quorum-sensing protein encoded by the tumour-inducing plasmid of Agrobacterium tumefaciens . TraR requires the pheromone N-3-oxooctanoyl- l -homoserine lactone (OOHL) for biological activity, and is dimeric both in solution and when bound to DNA. Dimerization is mediated primarily by two α-helices, one in the N-terminal OOHL binding domain, and the other in the C-terminal DNA binding domain. Each of these helices forms a parallel coiled coil with the identical helix of the opposite subunit. We have previously shown that OOHL is essential for resistance to proteolysis, and here we asked whether dimerization is also required for protease resistance. We constructed a series of site-directed mutations at the dimer interface, and tested these mutants for activity in vivo . Alteration of residues A149, A150, A153, A222 and I229 completely abolished activity, while alteration of three other residues also caused significant defects. All mutants were tested for dimerization as well as for specific DNA binding. The cellular abundance of these proteins in A. tumefaciens was measured using Western immunoblots and OOHL sequestration, while the half-life was measured by pulse-chase radiolabelling. We found a correlation between defects in in vivo activity, in vitro dimerization, DNA binding and protein half-life. We conclude that dimerization of TraR enhances resistance to cellular proteases.  相似文献   

10.
The extracellular signaling molecule autoinducer-2 (AI-2) mediates quorum-sensing communication in diverse bacterial species. In marine vibrios, binding of AI-2 to the periplasmic receptor LuxP modulates the activity of the inner membrane sensor kinase LuxQ, transducing the AI-2 information into the cytoplasm. Here, we show that Vibrio harveyi LuxP associates with LuxQ in both the presence and absence of AI-2. The 1.9 A X-ray crystal structure of apoLuxP, complexed with the periplasmic domain of LuxQ, reveals that the latter contains two tandem Per/ARNT/Simple-minded (PAS) folds. Thus, although many prokaryotic PAS folds themselves bind ligands, the LuxQ periplasmic PAS folds instead bind LuxP, monitoring its AI-2 occupancy. Mutations that disrupt the apoLuxP:LuxQ interface sensitize V. harveyi to AI-2, implying that AI-2 binding causes the replacement of one set of LuxP:LuxQ contacts with another. These conformational changes switch LuxQ between two opposing enzymatic activities, each of which conveys information to the cytoplasm about the cell density of the surrounding environment.  相似文献   

11.
Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR (pqsR-mediated PQS regulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins.  相似文献   

12.
Marine sponges are hosts to diverse and dense bacterial communities and thus provide a potential environment for quorum sensing. Quorum sensing, a key factor in cell–cell communication and bacterial colonization of higher animals, might be involved in the symbiotic interactions between bacteria and their sponge hosts. Given that marine Proteobacteria are known to produce N -acyl homoserine lactone (AHL) signal molecules, we tested the production of AHLs by Alpha - and Gammaproteobacteria isolated from marine sponges Mycale laxissima and Ircinia strobilina and the surrounding water column. We used three different AHL biodetection systems in diffusion assays: Chromobacterium violaceum , Agrobacterium tumefaciens and Sinorhizobium meliloti with optimal sensitivity to short-chain (C4–C6), moderate-chain (C8–C12) and long-chain (≥ C14) AHLs respectively. Thirteen of 23 isolates from M. laxissima and five of 25 isolates from I. strobilina were found to produce AHLs. Signals were detected from two of eight proteobacterial strains from the water column. Thin-layer chromatographic assays based on the A. tumefaciens reporter system were utilized to determine the AHL profiles of the positive isolates. The types and amounts of AHLs synthesized varied considerably among the strains. Small ribosomal rRNA gene sequencing revealed that the AHL-producing alphaproteobacterial isolates were mainly from the Silicibacter–Ruegeria subgroup of the Roseobacter clade. Two-dimensional gel electrophoresis (2DGE)-based proteomic analyses were congruent with phylogenetic relationships but provided higher resolution to differentiate these closely related AHL-producing strains.  相似文献   

13.
A quorum-sensing mechanism involving the pheromone ComX and the ComP-ComA two-component system controls natural competence in Bacillus subtilis. ComX is expressed as a cytoplasmic inactive precursor that is released into the extracellular medium as a cleaved, modified decapeptide. This process requires the product of comQ. In the presence of ComX, the membrane-localized ComP histidine kinase activates the response regulator ComA. We compared the sequences of the quorum-sensing genes from four closely related bacilli, and we report extensive genetic polymorphism extending through comQ, comX, and the 5′ two-thirds of comP. This part of ComP encodes the membrane-localized and linker domains of the sensor protein. We also determined the sequences of the comX genes of four additional wild-type bacilli and tested the in vivo activities of all eight pheromones on isogenic strains containing four different ComP receptor proteins. A striking pattern of specificity was discovered, providing strong evidence that the pheromone contacts ComP directly. Furthermore, we show that coexpression of comQ and comX in Escherichia coli leads to the production of active pheromone in the medium, demonstrating that comQ is the only dedicated protein required for the processing, modification, and release of active competence pheromone. Some of the implications of these findings for the evolution and the mechanism of the quorum-sensing system are discussed.  相似文献   

14.
In Pseudomonas aeruginosa , synthesis of the quorum-sensing signal molecules N -butanoyl- L -homoserine lactone (BHL) and N -hexanoyl- L -homoserine lactone (HHL) requires the LuxI homologue RhlI(VsmI). By using thin-layer chromatography in conjunction with high-performance liquid chromatography (HPLC) and mass spectrometry, we show that purified RhlI can catalyse the biosynthesis of BHL and HHL using either S -adenosylmethionine (SAM) or homoserine lactone (HSL) but not homoserine as the source of the homoserine lactone moiety. As we were unable to detect homoserine lactone in cytoplasmic extracts of Escherichia coli , we conclude that SAM is the natural substrate for RhlI-directed N -acylhomoserine lactone (AHL) biosynthesis. The N -acyl chain of BHL and HHL can be supplied by the appropriately charged coenzyme A derivative (either n -butanoyl-CoA or n -hexanoyl-CoA). The specificity of RhlI for charged CoA derivatives is demonstrated as RhlI was unable to generate AHLs detectable in our bioassays from acetyl-CoA, malonyl-CoA, n -octanoyl-CoA, n -decanoyl-CoA, DL-β-hydroxybutanoyl-CoA or crotonoyl-CoA. RhlI was also unable to use N -acetyl- S -3-oxobutanoylcysteamine, a chemical mimic for 3-oxobutanoyl-CoA. Furthermore, the RhlI-catalysed synthesis of BHL and HHL was most efficiently driven when NADPH was included in the reaction mixture.  相似文献   

15.
16.
17.
Denitrification is a well-studied respiratory system that is also important in the biogeochemical nitrogen cycle. Environmental signals such as oxygen and N-oxides have been demonstrated to regulate denitrification, though how denitrification is regulated in a bacterial community remains obscure. Pseudomonas aeruginosa is a ubiquitous bacterium that controls numerous genes through cell-to-cell signals. The bacterium possesses at least two N-acyl-L-homoserine lactone (AHL) signals. In our previous study, these quorum-sensing signals controlled denitrification in P. aeruginosa. In addition to the AHL signals, a third cell-to-cell communication signal, 2-heptyl-3-hydroxy-4-quinolone, referred to as the Pseudomonas quinolone signal (PQS), has been characterized. In this study, we examined the effect of PQS on denitrification to obtain more insight into the respiratory regulation in a bacterial community. Denitrification in P. aeruginosa was repressed by PQS, which was partially mediated by PqsR and PqsE. Measuring the denitrifying enzyme activities indicated that nitrite reductase activity was increased by PQS, whereas PQS inhibited nitric oxide reductase and the nitrate-respiratory chain activities. This is the first report to demonstrate that PQS influences enzyme activities, suggesting this effect is not specific to P. aeruginosa. Furthermore, when iron was supplied to the PQS-added medium, denitrifying activity was almost restored, indicating that the iron chelating property of PQS affected denitrification. Thus, our data indicate that PQS regulates denitrification primarily through iron chelation. The PQS effect on denitrification was relevant in a condition where oxygen was limited and denitrification was induced, suggesting its role in controlling denitrification where oxygen is present.  相似文献   

18.
BpsIR, a LuxIR quorum-sensing homolog, is required for optimal expression of virulence and secretion of exoproducts in Burkholderia pseudomallei. Cell density-dependent expression of bpsI and bpsR, the positive regulation of bpsIR expression by BpsR, and the synthesis of N-octanoyl-homoserine lactone (C8HSL) by BpsI are described in this report.  相似文献   

19.
Cells sense nutrients present in the extracellular environment and modulate the activities of intracellular signaling systems in response to nutrient availability. This study demonstrates that RalA and its activator RalGDS participate in nutrient sensing and are indispensable for activation of mammalian target of rapamycin complex 1 (mTORC1) induced by extracellular nutrients. Knockdown of RalA or RalGDS abolished amino acid- and glucose-induced mTORC1 activation, as judged by phosphorylation of S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1. The amount of GTP-bound RalA increased in response to increased amino acid availability. In addition, RalA knockdown suppressed Rheb-induced S6 kinase phosphorylation, and the constitutively active form of RalA induced mTORC1 activation in the absence of Rheb. These results collectively suggest that RalGDS and RalA act downstream of Rheb and that RalA activation is a crucial step in nutrient-induced mTORC1 activation.  相似文献   

20.
Many Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum-sensing (QS) signal molecules. AHL QS has been the subject of extensive investigation in the last decade and has become a paradigm for bacterial intercellular signaling. Research in AHL QS has been considerably aided by simple methods devised to detect AHLs using bacterial biosensors that phenotypically respond when exposed to exogenous AHLs. This article reviews and discusses the currently available bacterial biosensors which can be used in detecting and studying the different AHLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号