首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium carbon storage capacity of the terrestrial biosphere has been investigated by running the Lund–Potsdam–Jena Dynamic Global Vegetation Model to equilibrium for a range of CO2 concentrations and idealized climate states. Local climate is defined by the combination of an observation-based climatology and perturbation patterns derived from a 4 × CO2 warming simulations, which are linearly scaled to global mean temperature deviations, Δ T glob. Global carbon storage remains close to its optimum for Δ T glob in the range of ±3°C in simulations with constant atmospheric CO2. The magnitude of the carbon loss to the atmosphere per unit change in global average surface temperature shows a pronounced nonlinear threshold behavior. About twice as much carbon is lost per degree warming for Δ T glob above 3°C than for present climate. Tropical, temperate, and boreal trees spread poleward with global warming. Vegetation dynamics govern the distribution of soil carbon storage and turnover in the climate space. For cold climate conditions, the global average decomposition rate of litter and soil decreases with warming, despite local increases in turnover rates. This result is not compatible with the assumption, commonly made in global box models, that soil turnover increases exponentially with global average surface temperature, over a wide temperature range.  相似文献   

2.
In grassland ecosystems, most of the carbon (C) occurs below-ground. Understanding changes in soil fluxes induced by elevated atmospheric CO2 is critical for balancing the global C budget and for managing grassland ecosystems sustainably. In this review, we use the results of short-term (1–2 years) studies of below-ground processes in grassland communities under elevated CO2 to assess future prospects for longer-term increases in soil C storage.
Results are broadly consistent with those from other plant communities and include: increases in below-ground net primary productivity and an increase in soil C cycling rate, changes in soil faunal community, and generally no increase in soil C storage. Based on other experimental data, future C storage could be favoured in soils of moderate nutrient status, moderate-to-high clay content, and low (or moderateIy high) soil moisture status. Some support for these suggestions is provided by preliminary results from direct measurements of soil C concentrations near a New Zealand natural CO2-venting spring, and by simulations of future changes in grassland soils under the combined effects of CO2 fertilization and regional climate change.
Early detection of any increase in soil C storage appears unlikely in complex grassland communities because of (a) the difficulty of separating an elevated CO2 effect from the effects of soil factors including moisture status, (b) the high spatial variability of soil C and (c) the effects of global warming. Several research imperatives are identified for reducing the uncertainties in the effects of elevated atmospheric CO2 on soil C.  相似文献   

3.
The possibility of carbon (C) being locked away from the atmosphere for millennia is given in hydromorphic soils. However, the water-table-dependent feedback from soil organic matter (SOM) decomposition to the climate system is less clear. At least three greenhouse gases are produced: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These gases show emission peaks at different water table positions and have different global warming potentials (GWP), for example a factor of 23 for CH4 and 296 for N2O as compared with the equivalent mass of CO2 on a 100-year time horizon. This review of available annual data on all three gases revealed that the radiative forcing effect of SOM decomposition is principally dictated by CO2 despite its low GWP. Anaerobic SOM decomposition generally has a lower potential feedback to the climatic system than aerobic SOM decomposition. Concrete values are constrained by a lack of data from tropical and subarctic regions. Furthermore, data on N2O and on plant effects are generally rare. However, there is a clear latitudinal differentiation for the GWP of soils under anaerobic conditions compared with aerobic conditions when looking at CO2 and CH4: in the tropical and temperate regions, the anaerobic GWP showed a range of 25–60% of the aerobic value, but values varied between 80% and 110% in the boreal zone. Hence, particularly in the vulnerable boreal zone, the feedback from ecosystems to climate change will highly depend on plant responses to changing water tables at elevated temperatures.  相似文献   

4.
1. Bracken ( Pteridium aquilinum ) is an important fern with a global distribution. Little is known of the response of this species to elevated CO2. We investigated the effects of high CO2 (570 compared with 370 μmol mol–1) with and without an increased nutrient supply (a combined N, P, K application) on the growth and physiology of bracken, growing in containers in controlled-environment glasshouses, over two full growing seasons. Results of growth and physiology determinations are reported for the second season.
2. Elevated CO2 had little impact on the growth or allocation of dry mass in bracken. No significant changes were detected in dry mass of the total plant or any of the organs: rhizomes, roots and fronds. In contrast to the small effects of high CO2, the high nutrient treatment caused a three-fold stimulation of total plant dry mass and an increase in the allocation of dry mass to above ground when compared with low nutrient controls.
3. Net photosynthetic rates in saturating light were increased by both high CO2 and nutrient treatments, particularly in spring months (May and June). Growth in elevated CO2 did not cause a down-regulation in light-saturated rates of photosynthesis. The increased carbon gain in the high CO2 treatments was accompanied, in the low-nutrient plants, by higher concentrations of carbohydrates. However, in high-nutrient plants the CO2 treatment did not cause an accumulation of carbohydrates. The absence of a growth response to elevated CO2 in bracken despite significant increases in photosynthesis requires further investigation.  相似文献   

5.
The global environment is changing with increasing temperature and atmospheric carbon dioxide concentration, [CO2]. Because these two factors are concomitant, and the global [CO2] rise will affect all biomes across the full global range of temperatures, it is essential to review the theory and observations on effects of temperature and [CO2] interactions on plant carbon balance, growth, development, biomass accumulation and yield. Although there are sound theoretical reasons for expecting a larger stimulation of net CO2 assimilation rates by increased [CO2] at higher temperatures, this does not necessarily mean that the pattern of biomass and yield responses to increasing [CO2] and temperature is determined by this response. This paper reviews the interactions between the effects of [CO2] and temperature on plants. There is little unequivocal evidence for large differences in response to [CO2] at different temperatures, as studies are confounded by the different responses of species adapted and acclimated to different temperatures, and the interspecific differences in growth form and development pattern. We conclude by stressing the importance of initiation and expansion of meristems and organs and the balance between assimilate supply and sink activity in determining the growth response to increasing [CO2] and temperature.  相似文献   

6.
Implicit in discussions of plant nutrition and climate change is the assumption that we know what to do relative to nutrient management here and now but that these strategies might not apply in a changed climate. We review existing knowledge on interactive influences of atmospheric carbon dioxide concentration, temperature and soil moisture on plant growth, development and yield as well as on plant water use efficiency (WUE) and physiological and uptake efficiencies of soil-immobile nutrients. Elevated atmospheric CO2 will increase leaf and canopy photosynthesis, especially in C3 plants, with minor changes in dark respiration. Additional CO2 will increase biomass without marked alteration in dry matter partitioning, reduce transpiration of most plants and improve WUE. However, spatiotemporal variation in these attributes will impact agronomic performance and crop water use in a site-specific manner. Nutrient acquisition is closely associated with overall biomass and strongly influenced by root surface area. When climate change alters soil factors to restrict root growth, nutrient stress will occur. Plant size may also change but nutrient concentration will remain relatively unchanged; therefore, nutrient removal will scale with growth. Changes in regional nutrient requirements will be most remarkable where we alter cropping systems to accommodate shifts in ecozones or alter farming systems to capture new uses from existing systems. For regions and systems where we currently do an adequate job managing nutrients, we stand a good chance of continued optimization under a changed climate. If we can and should do better, climate change will not help us.  相似文献   

7.
The resource balance model predicts that under elevated atmospheric CO2, plants should preferentially allocate photosynthate to acquiring below-ground resources. Only short-term experiments are available to test this hypothesis, while long-term responses are really of interest in global change ecology. Arbuscular mycorrhizae represent one mode of below-ground nutrient acquisition available to the vast majority of plants. Percent root colonization by arbuscular mycorrhizal fungi (AMF), AMF soil hyphal length, and soil concentrations of the AMF protein glomalin increased linearly along a CO2 gradient provided in a grassland by a CO2 spring in Northland, New Zealand. These results are an important confirmation of numerous short-term studies, and present the first test of the resource balance model, applied to AMF, after long-term elevated CO2 exposure.  相似文献   

8.
Respiratory responses of higher plants to atmospheric CO2 enrichment   总被引:5,自引:0,他引:5  
Although the respiratory response of native and agricultural plants to atmospheric CO2 enrichment has been reported over the past 75 years, only recently have these effects emerged as prominent measures of plant and ecosystem response to the earth's changing climate. In this review we discuss this rapidly expanding field of study and propose that both increasing and decreasing rates of leaf and whole-plant respiration are likely to occur in response to rising CO2 concentrations. While the stimulatory effects of CO2 on respiration are consistent with our knowledge of leaf carbohydrate status and plant metabolism, we wish to emphasize the rather surprising short-term inhibition of leaf respiration by elevated CO2 and the reported effects of long-term CO2 exposure on growth and maintenance respiration. As is being found in many studies, it is easier to document the respiratory response of higher plants to elevated CO2 than it is to assign a mechanistic basis for the observed effects. Despite this gap in our understanding of how respiration is affected by CO2 enrichment, data are sufficient to suggest that changes in leaf and whole-plant respiration may be important considerations in the carbon dynamics of terrestrial ecosystems as global CO2 continues to rise. Suggestions for future research that would enable these and other effects of CO2 on respiration to be unravelled are presented.  相似文献   

9.
Cumulative pressures from global climate and ocean change combined with multiple regional and local‐scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio‐economic settings, we present an Adaptive Resilience‐Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press‐type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse‐type (acute) stressors (e.g. storms, bleaching events, crown‐of‐thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo‐Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on‐the‐ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.  相似文献   

10.
Water is a key variable driving the composition and productivity of pastures and rangelands, and many of the ecosystems in these grasslands are highly sensitive to changes in water supply. The possibility that elevated CO2 concentrations may alter plant water relations is therefore particularly relevant to pastures and rangelands, and may have important consequences for grassland ecosystem function, water use, carbon storage and nutrient cycling. The planning of effective research to better understand these changes requires attention to both: (i) gaps in knowledge about CO2 and water interactions, and (ii) knowledge of how precisely the effects of CO2 must be understood in relation to other factors, in order to predict changes in grassland structure and production. A recent microcosm experiment illustrates that non-linear effects of CO2 and water stress could perturb primary production by triggering changes in grassland community composition. The magnitudes of the effects of CO2 on key grassland ecosystems remain to be precisely determined through ecosystem-level experiments. A simplified simulation of the impact of different levels of productivity change in a water-limited Australian rangeland system was conducted by varying effects of CO2 on radiation and water use efficiency. The results indicate that direct effects of CO2 may be moderated at the enterprise scale by accompanying changes in adaptive management by farmers. We conclude that future research should aim to construct quantitative relationships and identify thresholds of response for different grassland systems. The sensitivity of these systems to management (such as grazing pressure) should also be considered when developing integrated predictions of future effects of CO2 on water supply to grassland ecosystems.  相似文献   

11.
Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with the root systems of most plant species. These mutualisms regulate nutrient exchange in the plant–soil interface and might influence the way in which plants respond to increasing atmospheric CO2. In other experiments, mycorrhizal responses to elevated CO2 have been variable, so in this study we test the hypothesis that different genera of AM fungi differ in their response, and in turn alter the plant's response, to elevated CO2. Four species from three genera of AM fungi were tested. Artemisia tridentata Nutt. seedlings were inoculated with either Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, Acaulospora sp. or Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders and grown at either ambient CO2 (350 ppm) or elevated CO2 (700 ppm). Several significant inter-specific responses were detected. Elevated CO2 caused percent arbuscular and hyphal colonization to increase for the two Glomus species, but not for Acaulospora sp. or S. calospora . Vesicular colonization was not affected by elevated CO2 for any fungal species. In the extra-radical phase, the two Glomus species produced a significantly higher number of spores in response to elevated CO2, whereas Acaulospora sp. and S. calospora developed significantly higher hyphal lengths. These data show that AM fungal taxa differ in their growth allocation strategies and in their responses to elevated CO2, and that mycorrhizal diversity should not be overlooked in global change research.  相似文献   

12.
Evolutionary responses of stomatal density to global CO2 change   总被引:3,自引:0,他引:3  
Stomatal density is known to respond to CO2 levels during leaf development. Current interest in the increasing concentration of atmospheric CO2 has stimulated much experimentation on the responses of plants to relatively short-term exposure in artificially high CO2 levels. Attempts to extrapolate from short-term to long-term responses raise fundamental questions concerning evolutionary change in response to rising global CO2 levels. We consider the improved water use efficiency observed under elevated CO2 levels to be the main driving force of natural selection affecting the genotypic component controlling stomatal density. Whether a response is merely phenotypic or becomes incorporated into the genotype depends on two factors: (i) the time scale of exposure and (ii) the generation time of a species. Measurements of stomatal density on fossil leaves of Salix herbacea through a glacial cycle covering the last 140000 years have shown a decrease in stomatal density in response to the rising CO2 levels of this period. This accords with the shorter-term observations on leaves of trees seen in herbarium specimens where the stomatal density has decreased in response to the rising CO2 levels of the last 200 years. The results indicate that natural selection over the 140000-year period may have favoured a similar response to that shown by trees phenotypically over the last 200 years. Since there is now some evidence for the genetic control of stomatal density, the role of natural selection affecting it must be considered when translating responses from short-term experiments to predict how stomatal density will be affected by long-term climatic and atmospheric change.  相似文献   

13.
Coral reefs provide food and livelihoods for hundreds of millions of people as well as harbour some of the highest regions of biodiversity in the ocean. However, overexploitation, land‐use change and other local anthropogenic threats to coral reefs have left many degraded. Additionally, coral reefs are faced with the dual emerging threats of ocean warming and acidification due to rising CO2 emissions, with dire predictions that they will not survive the century. This review evaluates the impacts of climate change on coral reef organisms, communities and ecosystems, focusing on the interactions between climate change factors and local anthropogenic stressors. It then explores the shortcomings of existing management and the move towards ecosystem‐based management and resilience thinking, before highlighting the need for climate change‐ready marine protected areas (MPAs), reduction in local anthropogenic stressors, novel approaches such as human‐assisted evolution and the importance of sustainable socialecological systems. It concludes that designation of climate change‐ready MPAs, integrated with other management strategies involving stakeholders and participation at multiple scales such as marine spatial planning, will be required to maximise coral reef resilience under climate change. However, efforts to reduce carbon emissions are critical if the long‐term efficacy of local management actions is to be maintained and coral reefs are to survive.  相似文献   

14.
Ecosystem CO2 and N2O exchanges between soils and the atmosphere play an important role in climate warming and global carbon and nitrogen cycling; however, it is still not clear whether the fluxes of these two greenhouse gases are correlated at the ecosystem scale. We collected 143 pairs of ecosystem CO2 and N2O exchanges between soils and the atmosphere measured simultaneously in eight ecosystems around the world and developed relationships between soil CO2 and N2O fluxes. Significant linear regressions of soil CO2 and N2O fluxes were found for all eight ecosystems; the highest slope occurred in rice paddies and the lowest in temperate grasslands. We also found the dominant role of growing season on the relationship of annual CO2 and N2O fluxes. No significant relationship between soil CO2 and N2O fluxes was found across all eight ecosystem types. The estimated annual global N2O emission based on our findings is 13.31 Tg N yr−1 with a range of 8.19–18.43 Tg N yr−1 for 1980–2000, of which cropland contributes nearly 30%. Our findings demonstrated that stoichiometric relationships may work on ecological functions at the ecosystem level. The relationship of soil N2O and CO2 fluxes developed here could be helpful in biogeochemical modeling and large-scale estimations of soil CO2 and N2O fluxes.  相似文献   

15.
16.
Biologists have been challenged to envisage the likely consequences of increases in atmospheric carbon dioxide concentrations, and the suite of accompanying environmental changes (e.g. rising temperature, changing rainfall patterns, etc.) on our biotic systems. Research to date on plant responses has been extensive, but work on herbivore responses has been less complete, and work on higher trophic levels nearly nonexistent. One group of herbivores that has been reasonably well studied is aphids, and at least for this group, researchers have even begun to investigate responses at higher trophic levels, to include parasitoids. In this paper, we develop a mechanistic mathematical model of the general interaction between grasses, cereal aphids and their parasitoids. We used this model to investigate the interacting effects of rising CO2 and temperature. The model suggests that, while parasitoids do have an impact on the aphid colony population dynamics, they do not fundamentally alter the aphid response to climate change. The model predicts that for both aphids and their parasitoids, the population responses to combined effects of elevated CO2 and temperature will be more similar to current ambient conditions than we might expect from the individual effects of CO2 or temperature increases. This interaction has important consequences for the interpretation of results from experiments that study only the effect of rising CO2.  相似文献   

17.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

18.
Boreal forest ecosystems are sensitive to global warming, caused by increasing emissions of CO2 and other greenhouse gases. Assessment of the biological response to future climate change is based mainly on large-scale models. Whole-ecosystem experiments provide one of the few available tools by which ecosystem response can be measured and with which global models can be evaluated. Boreal ecosystem response to global change may be manifest by alterations in nitrogen (N) dynamics, as N is often the growth limiting nutrient. The CLIMEX (Climate Change Experiment) project entails catchment-scale manipulations of CO2 (to 560 ppmv) and temperature (by + 3 to + 5 °C) to whole forest ecosystems in southern Norway. Soil temperature is increased at 400-m2 EGIL catchment by means of electric cables placed on the soil surface. Soil warming at EGIL catchment caused an increase in nitrate and ammonium concentrations in runoff in the first year of treatment. We hypothesize that higher temperature increased N release by mineralization. Whether these responses are only transient will be shown by additional years' treatment.  相似文献   

19.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

20.
Abstract. Very little attention has been directed at the responses of tropical plants to increases in global atmospheric CO2 concentrations and the potential climatic changes. The available data, from greenhouse and laboratory studies, indicate that the photosynthesis, growth and water use efficiency of tropical plants can increase at higher CO2 concentrations. However, under field conditions abiotic (light, water or nutrients) or biotic (competition or herbivory) factors might limit these responses. In general, elevated atmospheric CO2 concentrations seem to increase plant tolerance to stress, including low water availability, high or low temperature, and photoinhibition. Thus, some species may be able to extend their ranges into physically less favourable sites, and biological interactions may become relatively more important in determining the distribution and abundance of species. Tropical plants may be more narrowly adapted to prevailing temperature regimes than are temperate plants, so expected changes in temperature might be relatively more important in the tropics. Reduced transpiration due to decreased stomatal conductance could modify the effects of water stress as a cue for vegetative or reproductive phenology of plants of seasonal tropical areas. The available information suggests that changes in atmospheric CO2 concentrations could affect processes as varied as plant/herbivore interactions, decomposition and nutrient cycling, local and geographic distributions of species and community types, and ecosystem productivity. However, data on tropical plants are few, and there seem to be no published tropical studies carried out in the field. Immediate steps should be undertaken to reduce our ignorance of this critical area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号