首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Tom-Moy  M.  Basbaum  C. B.  Nadel  J. A. 《Cell and tissue research》1983,228(3):549-562
Summary Lysozyme is a bacteriolytic enzyme found in respiratory tract fluid. In this study, immunocytochemistry was used to determine the cells of origin of tracheal lysozyme in the ferret. Lysozyme was found in secretory granules of serous but not mucous cells in the submucosal glands, and was absent from the surface epithelium, cartilage, and connective tissue. The exclusive presence of lysozyme in serous gland cells renders it useful as a biochemical marker of that cell type.Measurements of lysozyme assayed from the incubating medium indicated that bethanechol stimulated lysozyme release by 260±80.9% (mean ±SE), phenylephrine by 80±16.4%, and terbutaline by 25±10.2%. Electron-microscopic and immunocytochemical analysis of incubated tissues revealed loss of serous granules and lysozyme immuno-reactivity in response to the drugs. Atropine, propranolol, and phentolamine blocked the stimulatory effects of bethanechol, terbutaline, and phenylephrine, respectively.These findings establish the usefulness of lysozyme as a serous-cell marker and demonstrate that secretory responses of different magnitude are evoked by equimolar concentrations of alpha- and beta-adrenergic and cholinergic drugs.  相似文献   

2.
To determine air–liquid interface (ALI) culture derived from cryopreserved mammalian tracheal ciliated cells is a viable ciliated cell model for the investigations of regulatory mechanisms of ciliary beat frequency (CBF), two studies were performed using ovine and porcine tracheae obtained from local slaughterhouses. The protease-digested tracheal ciliated cells were harvested and cultured at the ALI using collagen-coated, porous membrane inserts. In study 1, the ALI culturing protocols were established using non-cryopreserved ovine tracheal ciliated cells. Ciliogenesis was documented with immuno-histology and electron micrographs. Vigorous beating cilia were video-recorded. CBF was measured by laser light scattering. The functional integrity of the autonomic receptors of the ciliated cells was confirmed with the stimulatory responses of CBF using luminal methacholine and basolateral terbutaline. In study 2, porcine tracheal ciliated cells stored in liquid nitrogen for a minimum of 4 weeks were used. The cryopreserved cells were thawed and cultured using the ALI protocol established in study 1. After two months, cilia outgrowths were confirmed using video microscopy and scanning electron micrograph (SEM). The trans-epithelial resistances were 28.5 kΩ (n = 4). Luminal applications of 1 μM and 10 μM methacholine stimulated CBF from a baseline of 7.4 ± 0.2 Hz to 8.4 ± 0.8 Hz and 7.7 ± 0.4 Hz, respectively (n = 5). Basolateral applications of 1 μM and 10 μM terbutaline stimulated CBF from a baseline of 7.5 ± 0.3 Hz to 8.2 ± 0.4 Hz and 8.0 ± 0.4 Hz, respectively (n = 5). These data demonstrated that a ciliated cell bank can be established using cryopreserved ciliated cells for pulmonary drug discovery and toxicological screening.  相似文献   

3.
Summary Simultaneous capillary and luminal microperfusion studies were performed in the rat proximal tubule to determine the effects of the beta agonist isoproterenol and the alpha agonist phenylephrine on water absorption. Capillary and luminal perfusion solutions were composed such that organic solutes were not present, no bicarbonate was present in the lumen, and no chloride gradient was imposed. Under such conditions, water absorption (Jv) averaged 0.36±0.11 nl·min–1·mm–1. The addition of isoproterenol to the capillary solution in concentrations of 10–6 and 10–4 m resulted in significantly higherJv's of 0.68±0.10 and 0.71±0.11 nl·min–1·mm–1, respectively. The enhancing effect of isoproterenol was inhibited by the beta blocker propranolol (10–4 m), but not by the alpha blocker phentolamine (10–7 m). The addition of phenylephrine (10–6 m) to the capillary perfusion solution also resulted in a significantly higherJv of 0.84±0.14 nl·min–1·mm–1, an effect inhibited by phentolamine (10–7 m), but not by propranolol (10–4 m). Neither phentolamine nor propranolol alone in the concentrations indicated had an effect on water absorption. These experiments indicate that both alpha and beta agonists stimulate water absorption in the superficial proximal tubule of the rat. This effect appears to be relatively specific for each class of agonist, as demonstrated by the effects of the specific antagonists.  相似文献   

4.
J.F. Bruni  J. Meites 《Life sciences》1978,23(13):1351-1357
Acetylcholine and the cholinergic agonists, pilocarpine and physostigmine, increased GH release invivo. The increase in GH release by pilocarpine was reversed by concurrent administration of the cholinergic receptor blocker, atropine, whereas atropine alone did not alter serum GH concentrations. Cholinergic stimulation of GH release appears to be partially mediated through a catecholaminergic system since the response was partially inhibited by pimozide, a dopamine receptor blocker, or phentolamine, an α-adrenergic receptor blocker. The cholinergic system may function physiologically to help regulate GH release.  相似文献   

5.
This investigation characterised the effects of exogenous insulin on exocrine pancreatic secretion in anaesthetised healthy and diabetic rats. Animals were rendered diabetic by a single injection of streptozotocin (STZ, 60 mg kg–1 I.P.). Age-matched controls were injected citrate buffer. Rats were tested for hyperglycaemia 4 days after STZ injection and 7–8 weeks later when they were used for the experiments. Following anaesthesia (1 g kg–1 urethane I.P.), laparotomy was performed and the pancreatic duct cannulated for collection of pure pancreatic juice. Basal pancreatic juice flow rate in diabetic rats was significantly (p < 0.001) increased whereas protein and amylase outputs were significantly (p < 0.001) decreased compared to control rats. Insulin (1 IU, I.P.) produced in healthy rats significant increases in pancreatic flow rate, amylase secretion and protein output compared to basal (p < 0.05). Insulin action also included a reduction in blood glucose (152.7 ± 16.9 mg dl–1, n= 6, prior to insulin and 42.0 ± 8.4 mg dl–1, n= 4, 100 min later). In fact, flow rate and glycaemia showed a strong negative correlation (p < 0.01, Pearson). Pretreatment with atropine (0.2 mg kg–1, I.V.) abolished the effects of insulin on secretory parameters despite a similar reduction in glycaemia; in this series of experiments the correlation between flow rate and blood glucose was lost. In diabetic rats, insulin (4 IU, I.P.) did not modify exocrine pancreatic secretion. There was a fall in blood glucose (467.6 ± 14.0 mg dl–1, n= 10, prior to insulin and 386.6 ± 43.6 mg dl–1, n= 7, 120 min later). Rats, however, did not become hypoglycaemic. Similar results were observed in diabetic atropinized rats. The results of this study indicate that the effects of insulin on exocrine pancreatic secretion in anaesthetised healthy rats are mediated by hypoglycaemia-evoked vagal cholinergic activation. (Mol Cell Biochem 261: 105–110, 2004)  相似文献   

6.
Rat parotid acinar cells dispersed by a combination of enzymatic treatments remain sensitive to adrenergic and cholinergic agonists. Previous studies have implicated Ca2+ in both adrenergic and cholinergic responses. This paper describes the effects of adrenergic and cholinergic stimulation upon 45Ca2+ fluxes in isolated parotid acinar cells. Suspensions of dispersed cells took up 45Ca2+ from the medium. The net rate of isotope influx was increased by the adrenergic agonists epinephrine, norepinephrine, isoproterenol, and phenylephrine, and by the cholinergic agonists acetylcholine and carbamylcholine. In 1 mM Ca2+, epinephrine was capable of increasing the 45Ca2+ influx in 40 min to three times that of resting cells. Isoproterenol, a beta-adrenergic agonist, was only half as effective as epinephrine in stimulating maximal calcium uptake although it was equally effective in stimulating maximal amylase release in the same cells. Experiments with the alpha-adrenergic antagonist phentolamine, the beta-adrenergic antagonist propranolol, and the cholinergic antagonist atropine confirmed that alpha- and beta-adrenergic and cholinergic stimulation each had a direct stimulatory effect on 45Ca2+ uptake. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate also caused some stimulation of net calcium uptake. Direct measurement of Ca2+ efflux indicated that the increased calcium uptake in the presence of epinephrine was not the indirect result of a decrease in efflux. The rates of both basal and epinephrine-stimulated calcium uptake increased with increasing calcium concentration in the medium. Epinephrine had little effect on the rate of calcium uptake at 0.15 mM Ca2+. Although the energy poison NaCN had little effect on the basal rate of calcium uptake, the stimulable component of calcium uptake was inhibited by NaCN at all calcium concentrations tested (0.2 to 4.1 mM).  相似文献   

7.
The content of inorganic polyphosphates (polyP) in vacuoles of the yeast Saccharomyces cerevisiae is 15% of the total cellular polyP. Over 80% of the vacuole polyP are in an acid-soluble fraction. It was first established by 31P-NMR spectroscopy that a polymeric degree (n) of two subfractions obtained by precipitation with Ba2+ in succession at pH 4.5 and 8.2 was approximately 20 ± 5 and 5 ± 2 residues of ortho-phosphoric acid, respectively. Under a deficit of phosphate (Pi) in the cultivation medium, the polyP content in vacuoles decreased 7-fold with the same drastic reduction of their content in the cell. Unlike intact yeast cells, where polyP overcompensation is observed after their transfer from phosphate-free to phosphate-containing medium, the vacuoles do not show this effect. The data indicate the occurrence of special regulatory mechanisms of polyP synthesis in vacuoles differing from those in the whole cell.  相似文献   

8.
Glucagon secretion is known to be stimulated by activation of the alpha-adrenoceptors. In this study, we investigated whether alpha-adrenoceptor blockade by phentolamine affects basal and stimulated glucagon secretion in the mouse. Phentolamine was injected intraperitoneally to mice at dose levels varying from 2.6 to 260 mumol/kg. It was found that, while decreasing plasma glucose levels, phentolamine did not over this wide dose range affect basal glucagon concentrations indicating an inhibition of the hypoglycaemia-induced glucagon secretion. Further, phentolamine clearly inhibited the glucagon secretory response to beta-adrenergic or cholinergic stimulation. Thus, phentolamine (2.6 mumol/kg), impaired the glucagon secretory response to the beta 2-adrenoceptor agonist terbutaline by 51% (P less than 0.01), and to the cholinergic agonist carbachol by 44% (P less than 0.02). We conclude that alpha-adrenoceptor blockade by phentolamine inhibits the glucagon secretion following hypoglycaemia or stimulation by beta-adrenergic and cholinergic agonists. Thus, the alpha-adrenoceptors seem to be of great importance for glucagon secretion in the mouse.  相似文献   

9.
Guanosine 3′,5′-monophosphate (cGMP) is an intracellular messenger in various kinds of cell. We investigated the regulation of cGMP production by nitric oxide (NO) in rabbit submandibular gland cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose- and time-dependent manner, but the α-agonist phenylephrine, substance P and the β-agonist isoproterenol failed to evoke cGMP production. In fura-2-loaded cells, methacholine induced an increase in intracellular Ca2+ ([Ca2+]i) in a concentration-dependent manner, which was similar to that for cGMP production. When the external Ca2+ was chelated with EGTA, methacholine failed to induce cGMP production. Ca2+ ionophore A23187 and thapsigargin, which induce the increase in [Ca2+]i without activation of Ca2+-mobilizing receptors, mimicked the effect of methacholine. cGMP production induced by methacholine, A23187 and thapsigargin was clearly inhibited by NG-nitro- -arginine methylester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS). S-Nitroso-N-acetyl- -penicillamine (SNAP), a NO donor, induced cGMP formation. In the lysate of rabbit submandibular gland cells, Ca2+-regulated nitric oxide synthase activity was detected. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is regulated by NO generation via the increase in [Ca2+]i.  相似文献   

10.
We have previously identified muscarinic cholinergic receptors in the bovine pineal gland with a KD value of 0.423±0.01 nM and a Bmax value of 69.75±20.91 fmol/mg protein. Similarly, we have shown that the bovine pineal gland possesses a specific choline acetyltransferase with an activity of 0.034±0.004 nmol/mg protein/min. In order to delineate the function of these cholinergic receptor sites, we have studied the effects of muscarinic cholinergic receptor agonists on the activity of serotonin N-acetyltransferase, the melatonin synthesizing enzyme. Cholinergic receptor agonists such as methacholine (10 M), carbachol (10 M), and oxotremorine (10 M) inhibited the activity of serotonin N-acetyltransferase in the bovine pineal explants in culture, from a control value of 5.02±0.45 to 1.25±0.25, 1.30±0.15, and 1.22±0.20 pmol/mg protein/min, respectively. These inhibitory effects were blocked by muscarinic cholinergic receptor antagonists such as atropine (20 M) or QNB (20 M). The presence of high affinity muscarinic cholinergic binding sites, of a specific choline acetyltransferase, along with an inhibitory action of cholinomimetic agents on the activity of serotonin N-acetyltransferase, are interpreted to suggest that muscarinic cholinergic fibers may modulate the synthesis and actions of pineal melatonin.  相似文献   

11.
To characterize the Ca2+ transport process across the apical membrane of the rabbit connecting tubule (CNT), we examined the effects of luminal pressure on parathyroid hormone (PTH)-dependent apical Ca2+ transport in this segment perfused in vitro. An increase of perfusion pressure (0.2 to 1.2 KPa) caused cytoplasmic free Ca2+ concentration ([Ca2+].) to increase by 42 ± 11 nm in Fura-2 loaded perfused CNT. The response was accentuated when 10 nm PTH was added to the bath (101 ± 30 nm, n = 6). Addition of 0.1 mm chlorphenylthio-cAMP (CPT-cAMP) to the bath also augmented the [Ca2+]; response to pressure from 36 ± 16 to 84 ± 26 nm (n = 3). Under steady perfusion pressure at 1.2 KPa, PTH (10 nm) increased [Ca2+]; by 31 ± 7 nm (n = 5), whereas it did only slightly by 6 ± 2 nm (n = 12) at 0.2 KPa. The pressure-dependent increase of [Ca2+]; was abolished by removing luminal Ca2+ (n = 3), and was not affected by 0.1 and 10 m nicardipine (n = 4) in the presence of 10 nm PTH. Cell-attached patch clamp studies on the apical membrane of everted CNT with pipettes filled with either 200 mm CaCl2 or 140 mm NaCl revealed channel activities with conductances of 42 ± 2 pS (n = 4) or 173 ± 7 pS (n = 5), respectively. An application of negative pressure (–4.9 KPa) to the patch pipette augmented its mean number of open channels (NP 0 ) from 0.005 ± 0.001 to 0.022 ± 0.005 in the Ca2+-filled pipette, and was further accelerated to 0.085 ± 0.014 (n = 3) by 0.1 mm CPT-cAMP. In the Na+-filled pipette, similar results were obtained (n = 3), and CPT-cAMP did not activate the stretch-activated channel in the absence of negative pressure (n = 3). These results suggest that a stretch-activated nonselective cation channel exists in the apical membrane of the CNT and that it is activated by PTH in the presence of hydrostatic pressure, allowing entry of Ca2+ transport from the apical membrane.We appreciate Ms. Hisayo Hosaka and Ms. Yuki Oyama for their technical assistance and Ms. Keiko Sakai for her secretarial work. This research was supported by grants from the Ministry of Education and Culture of Japan (No. 05670054) and from Yamanouchi Foundation for Research on Metabolic Disorders (1992–1993).  相似文献   

12.
Mixed and muscarinic cholinergic agonists (acetylcholine, carbamylcholine, methacholine, oxotremorine, and pilocarpine) accelerated in a dose-dependent manner the progesterone-induced maturation of Xenopus laevis oocytes. None of these agonists induced oocyte maturation in the absence of progesterone. The accelerating effect of cholinergic agonists was blocked in a dose-dependent manner by specific muscarinic antagonists (atropine and scopolamine) but not by specific nicotinic antagonists (d-tubocurarine and hexamethonium). The specific nicotinic agonist, dimethylphenylpiperazine, alone induced maturation in the absence of progesterone. The optimal promoting effect of acetylcholine was observed when oocytes were exposed to acetylcholine for 30 min, 5 min after the addition of progesterone, and was markedly better than when oocytes were exposed to acetylcholine throughout their incubation with progesterone. The effect of acetylcholine was observed in both follicle-enclosed and in defolliculated oocytes, indicating that follicular cells were not the target of the cholinergic drugs.  相似文献   

13.
Summary The effects of carbonic anhydrase inhibitors on secretion by macropodine parotid and mandibular glands were investigated using anaesthetized red kangaroos. In the parotid gland, acetazolamide (500 mol·l-1) reduced a stable acetylcholine-evoked, half-maximal flow rate of 2.02±0.034 to 0.27±0.023 ml·min-1 (87% reduction). Concurrently, salivary bicarbonate concentration and secretion fell (129.4±1.46 to 80.9±1.63 mmol·l-1 and 264.8±7.96 to 22.3±2.30 mol·min-1, respectively), phosphate and chloride concentrations rose (14.0±0.79 to 27.6±0.85 mmol·l-1 and 5.6±0.25 to 27.5±1.32 mmol·l-1, respectively), sodium concentration and osmolality were unaltered, and potassium concentration fell (8.8±0.33 to 6.4±0.29 mmol·l-1). High-rate cholinergic stimulation during acetazolamide blockade was unable to increase salivary flow beyond 11±0.9% of that for equivalent unblocked control stimulation. However, superimposition of isoprenaline infusion on the acetylcholine stimulation caused a three-fold increase in the blocked flow rate. These treatments were accompanied by small increases in salivary phosphate and chloride concentrations but not bicarbonate concentration. Methazolamide infusion caused similar changes in parotid secretion. In the mandibular gland, acetazolamide infusion had no effect on salivary flow rate during either low- or high-level acetylcholine stimulation. Acetazolamide caused no alterrations in salivary electrolyte secretion at low flow rates, but curtailed the rise in bicarbonate concentration associated with high-level acetylcholine stimulation. Acetazolamide administration did not affect the increase in salivary flow rate associated with isoprenaline infusion, but did block the concomitant increase in bicarbonate concentration and secretion substantially. It was concluded that neither cholinergic nor adrenergic stimulation of mandibular fluid secretion depends on secretion of bicarbonate derived from catalysed hydration of CO2, but a substantial proportion of the increase in bicarbonate secretion during isoprenaline administration, which is probably ductal in origin, is so dependent. In contrast to other salivary glands, including the ovine parotid, fluid secretion by the kangaroo parotid gland during cholinergic stimulation is largely dependent (about 90%) on secretion of bicarbonate derived from hydration of CO2 catalysed by glandular carbonic anhydrase. Fluid secretion during adrenergic stimulation is not bicarbonate dependent.Abbreviations b.w. body weight - PAH p-aminohippurate - PCO2 partial pressure carbon dioxide - PCO2 partial pressure of oxygen  相似文献   

14.
Abstract— Dissociated cell cultures of chick embryo sympathetic ganglia were incubated with [3H]nor-epinephrine ([3H]NE) which was taken up and stored in reserpine-sensitive sites. Exposure of the cultures to cholinergic agonists for 5 min intervals resulted in the releaseof a significant proportion (2–20%) of the intracellular stores of [3H]NE. Studies with specific cholinergic agonists and antagonists indicated that release of [3H]NE could be evoked by stimulation of either nicotinic or muscarinic receptors. Release evoked by both nicotinic and muscarinic agonists was totally blocked in the presence of 3 μM-tetrodotoxin. thus indicating that release was mediated via active electrical responses. Release by both types of agonists was also blocked in the presence of elevated Mg2+ or when free Ca2+ was removed from the extracellular medium. These findings are consistent with the presence of a stimulus-secretion coupling mechanism. Release evoked by nicotine was optimal in the presence of 1.2 mM-Ca2+, whereas release evoked by the muscarinic agonist methacholine increased by about 2-fold when the Ca2+ concentration was decreased from 1.2 to 0.3 mM. The latter observation may be due to a lowered threshold for evocation of active responses at low concentrations of Ca2+. Finally, no evidence was observed for interaction between the two types of receptors. These findings (a)indicate that cultured chick sympathetic neurons possess functional nicotinic and muscarinic cholinergic receptors as well as the ability to release NE via a stimulus-secretion coupling mechanism; (b) suggest that such cultures may be particularly useful for studying the molecular events which link stimulation of cholinergic receptors to neurotransmitter release; and (c) provide further evidence that muscarinic receptors may play aphysiological role in ganglionic transmission.  相似文献   

15.
Intravenous administration of methacholine (200 micrograms/kg) caused no changes in the seminiferous tubules of rats, but significantly increased intraluminal pressures and contractility of the caput, the corpus and the cauda epididymidis. The effect of methacholine was abolished by pretreatment with atropine (500 micrograms/kg), but not by phentolamine (400 micrograms/kg) or propranolol (400 micrograms/kg). Adrenaline (5-40 micrograms/kg), noradrenaline (5-40 micrograms/kg) and phenylephrine (100-400 micrograms/kg) had no effect on the seminiferous tubules, but dose-dependently elevated intraluminal pressures and enhanced the contractility of all regions of the epididymis. Isoproterenol (100-800 micrograms/kg) did not affect intraluminal pressures of the seminiferous tubules and the epididymal duct. The stimulatory effect of adrenergic agonists was specifically blocked by phentolamine, but not by propranolol or atropine. Cholinergic and adrenergic antagonists did not alter spontaneous contraction of the epididymis. The results suggest that the contractility of all segments of the rat epididymis, but not the seminiferous tubules, can be increased by autonomic drugs. The enhancing effect of adrenergic drugs is probably the result of activation through alpha-adrenergic receptors.  相似文献   

16.
Summary The effects of some drugs and electrical stimulation of the sympathetic chain on the vasculature of the isolated perfused tail of the cod has been studied. Adrenaline, phenylephrine and isoprenaline all constricted the tail vasculature, isoprenaline also producing dilation in some preparations at lower concentrations (10–9–10–6M). Electrical stimulation of the sympathetic chain produces vasoconstriction, which can be abolished by phentolamine in concentrations expected to be selective for -adrenoceptor blockade in the cod. A small dilatory response to nerve stimulation was seen in some preparations after phentolamine. Carbachol produced weak and irregular effects, and a contribution by cholinergic fibres therefore seems unlikely. It is concluded that the excitatory nervous control of the cod tail vasculature is solely by adrenergic sympathetic fibres, which act via an -adrenoceptor mechanism.  相似文献   

17.
M Endoh  S Motomura 《Life sciences》1979,25(9):759-768
In the isolated rabbit papillary muscle, experiments were carried out in order to elucidate whether or not cholinergic stimulation produces a differential antagonistic action on the positive inotropic effects mediated via β- and α-adrenoceptor stimulation. Carbachol (0.1–30 μM) alone scarcely affected the basal tension developed. The postive inotropic effects of phenylephrine (30 μM) in the presence of phentolamine and of isoprenaline, which were mediated via β-adrenoceptors, were markedly inhibited by carbachol. Carbachol (3 μM) shifted the dose-response curve for isoprenaline in a parallel manner, and that for phenylephrine with phentolamine to the right and downwards. Carbachol administered during induction of the positive inotropic effects via α-adrenoceptors by phenylephrine (30 μM) with pindolol or by methoxamine failed to inhibit these effects and increased further the tension developed. The dose-response curve for phenylephrine determined in the presence of pindolol was not affected by carbachol. The present results indicate that the cholinergic antagonism of the adrenergic action on the contractility of the mammalian ventricular myocardium is exerted specifically to the β-adrenoceptor-mediated action, but not to the α-adrenoceptor-mediated one.  相似文献   

18.
Airway submucosal glands are important sites of cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl) channel expression and fluid secretion in the airway. Whereas both mouse and human submucosal glands and their serous acinar cells express CFTR, human glands and serous cells secrete much more robustly than mouse cells/glands in response to cAMP-generating agonists such as forskolin and vasoactive intestinal peptide. In this study, we examined mouse and human serous acinar cells to explain this difference and reveal further insights into the mechanisms of serous cell secretion. We found that mouse serous cells possess a robust cAMP-activated CFTR-dependent Cl permeability, but they lack cAMP-activated calcium (Ca2+) signaling observed in human cells. Similar to human cells, basal K+ conductance is extremely small in mouse acinar cells. Lack of cAMP-activated Ca2+ signaling in mouse cells results in the absence of K+ conductances required for secretion. However, cAMP activates CFTR-dependent fluid secretion during low-level cholinergic stimulation that fails to activate secretion on its own. Robust CFTR-dependent fluid secretion was also observed when cAMP stimulation was combined with direct pharmacological activation of epithelial K+ channels with 1-ethyl-2-benzimidazolinone (EBIO). Our data suggest that mouse serous cells lack cAMP-mediated Ca2+ signaling to activate basolateral membrane K+ conductance, resulting in weak cAMP-driven serous cell fluid secretion, providing the likely explanation for reduced cAMP-driven secretion observed in mouse compared with human glands.  相似文献   

19.
The role of cyclic AMP in stimulus-secretion coupling was investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20–30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both α-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effective. A parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fraction. The results suggest that these drugs are acting on the parotid acinar cell through a β1-adrenergic mechanism.At the lowest concentrations tested, each of the adrenergic agonists stimulated significant α-amylase release with no detectable stimulation of cyclic AMP accumulation. Even in the presence of theophylline, phenylephrine at several concentrations increased α-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intracellular concentration of cyclic AMP may not be necessary for stimulation of α-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of α-amylase release by isoproterenol.Stimulation of α-amylase release by phenylephrine was only partially blocked by either α- or β-adrenerg blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolamine. Phenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and α-amylase release. However, phenoxybenzamine also potentiated the stimulation of α-amylase release by N6,O2′-dibutyryl adenosine 3′,5′-monophosphate. These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using α-adrenergic blocking agents as tools for investigation of α- and β-adrenergic antagonism.  相似文献   

20.
Responses of isolated rat iris dilator to some agents and to electrical stimulation were examined. Norepinephrine and epinephrine produced contraction, which was antagonized by 0.03 μM phentolamine. Acetylcholine produced relaxation at low concentrations (1 nM ? 1 μM) as great as 80 % of the resting tone while contraction at high concentrations (≥1 μM). Both responses were suppressed by 0.02 μM atropine and enhanced by 0.03 μM physostigmine. Electrical stimulation at low voltage or low frequency (up to 10 Hz) elicited relaxation while stimulation at high voltage or high frequency (30 Hz) produced contraction. Stimulation with intermediate strength elicited biphasic response. The contraction and relaxation induced by electrical stimulation were abolished by 3 μM phentolamine or by 0.05 μM atropine, respectively. Both phases were abolished by tetrodotoxin (0.3 μM). It is suggested that in the rat the cholinergic relaxation of the dilator may assist the cholinergic contraction of the sphincter (1). The pronounced cholinergic relaxation of nonvascular tissue is to be noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号