首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three 16S rRNA-targeted oligonucleotide probes, namely, PSMg437 targeting several members of the genus Pseudomonas, Hlm474 targeting several members of the genus Halomonas, and Clw844 targeting several members of the genus Colwellia, were designed. The microbial community structure and nitrogen removal ability of nitrate-containing saline wastewater treatment systems with anaerobic packed bed and fluidized bed were monitored. Direct cell counting using fluorescence in situ hybridization (FISH) images revealed that various phylogenetic groups were evenly distributed in the anaerobic packed bed whereas members of the genus Halomonas were dominant particularly in the anaerobic fluidized bed. These results suggest that the microbial communities produced by different flow conditions correlated with denitrification ability in saline industrial wastewater treatment systems.  相似文献   

2.
环境微生物群落功能研究的新方法和新策略   总被引:1,自引:0,他引:1  
魏力  杨成运  李友国 《生态学报》2008,28(9):4424-4429
微生物群落在驱动生物地球化学循环中扮演着重要角色,传统的研究方法可对微生物群落进行遗传结构的解析,但不能有效地与功能研究耦联.概述了近年发展起来的基于核酸和蛋白质水平的分子生物学新方法--环境mRNA 和 rRNA同时荧光原位杂交(FISH)、寡核苷酸微阵列技术(Oligonucleotide Microarray)、 稳定性同位素联合宏基因组学(SIP-enabled Metagenomics)和环境蛋白质组学(Metaproteomics)在环境微生物群落功能研究中的应用,并且对其发展趋势进行了分析和展望.  相似文献   

3.
The effects of naphthalene on microbial communities in the bottom boundary layer of the Delaware Bay estuary were investigated in microcosms using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) with oligonucleotide probes. Three days after the addition of naphthalene, rates of bacterial production and naphthalene mineralization were higher than in no-addition controls and than in cases where glucose was added. Analyses using both DGGE and FISH indicated that the bacterial community changed in response to the addition of naphthalene. FISH data indicated that a few major phylogenetic groups increased in response to the glucose addition and especially to the naphthalene addition. DGGE also demonstrated differences in community composition among treatments, with four phylotypes being unique to naphthalene-amended treatments and three of these having 16S rRNA genes similar to known hydrocarbon degraders. The bacterial community in the naphthalene-amended treatment was distinct from the communities in the glucose-amended treatment and in the no-addition control. These data suggest that polycyclic aromatic hydrocarbons may have large effects on microbial community structure in estuaries and probably on microbially mediated biogeochemical processes.  相似文献   

4.
以16S rRNA 为靶序列的寡核苷酸探针荧光原位杂交技术已广泛应用于分析复杂环境中的微生物群落构成,包括监测和鉴定病原微生物以及未被培养微生物.通过对临床样品中微生物细胞的检测能提供微生物在人体中的种类、数量和空间分布等信息.其结果快速准确,较之传统的病原微生物诊断方法具有明显的优越性,在临床应用中有广泛的前景.  相似文献   

5.
In order to identify and quantify the microorganisms present in a certain ecosystem, it has become necessary to develop molecular methods avoiding cultivation, which allows to characterize only the countable part of the microorganisms in the sample, therefore losing the information related to the microbial component which presents a vitality condition, although it cannot duplicate in culture medium. In this context, one of the most used techniques is fluorescence in situ hybridization (FISH) with ribosomal RNA targeted oligonucleotide probes. Owing to its speed and sensitivity, this technique is considered a powerful tool for phylogenetic, ecological, diagnostic and environmental studies in microbiology. Through the use of species-specific probes, it is possible to identify different microorganisms in complex microbial communities, thus providing a solid support to the understanding of inter-species interaction. The knowledge of the composition and distribution of microorganisms in natural habitats can be interesting for ecological reasons in microbial ecology, and for safety and technological aspects in food microbiology. Methodological aspects, use of different probes and applications of FISH to microbial ecosystems are presented in this review.  相似文献   

6.
A DNA microarray platform for the characterization of bacterial communities in freshwater sediments based on a heterogeneous set of 70 16S rRNA-targeted oligonucleotide probes and directly labeled environmental RNA was developed and evaluated. Application of a simple protocol for the efficient background blocking of aminosilane-coated slides resulted in an improved signal-to-noise ratio and a detection limit of 10 ng for particular 16S rRNA targets. An initial specificity test of the system using RNA from pure cultures of different phylogenetic lineages showed a fraction of false-positive signals of approximately 5% after protocol optimization and a marginal loss of correct positive signals. Subsequent microarray analysis of sediment-related community RNA from four different German river sites suggested low diversity for the groups targeted but indicated distinct differences in community composition. The results were supported by parallel fluorescence in situ hybridization in combination with sensitive catalyzed reporter deposition (CARD-FISH). In comparisons of the data of different sampling sites, specific detection of populations with relative cellular abundances down to 2% as well as a correlation of microarray signal intensities and population size is suggested. Our results demonstrate that DNA microarray technology allows for the fast and efficient precharacterization of complex bacterial communities by the use of standard single-cell hybridization probes and the direct detection of environmental rRNA, also in methodological challenging habitats such as heterogeneous lotic freshwater sediments.  相似文献   

7.
A DNA microarray platform for the characterization of bacterial communities in freshwater sediments based on a heterogeneous set of 70 16S rRNA-targeted oligonucleotide probes and directly labeled environmental RNA was developed and evaluated. Application of a simple protocol for the efficient background blocking of aminosilane-coated slides resulted in an improved signal-to-noise ratio and a detection limit of 10 ng for particular 16S rRNA targets. An initial specificity test of the system using RNA from pure cultures of different phylogenetic lineages showed a fraction of false-positive signals of ~5% after protocol optimization and a marginal loss of correct positive signals. Subsequent microarray analysis of sediment-related community RNA from four different German river sites suggested low diversity for the groups targeted but indicated distinct differences in community composition. The results were supported by parallel fluorescence in situ hybridization in combination with sensitive catalyzed reporter deposition (CARD-FISH). In comparisons of the data of different sampling sites, specific detection of populations with relative cellular abundances down to 2% as well as a correlation of microarray signal intensities and population size is suggested. Our results demonstrate that DNA microarray technology allows for the fast and efficient precharacterization of complex bacterial communities by the use of standard single-cell hybridization probes and the direct detection of environmental rRNA, also in methodological challenging habitats such as heterogeneous lotic freshwater sediments.  相似文献   

8.
The microbial community of a biofilter for waste gas treatment of an animal rendering plant was characterized by the analyses of the phospholipid fatty acids (PLFAs) of the filter material. For these analyses five samples of one filter were taken in intervals between one and two months. The main components of the PLFA profiles were straight chain saturated, monounsaturated and cyclopropyl fatty acids. Terminally branched and 10-methyl branched fatty acids were present in minor amounts. The structure and succession of the microbial community was interpreted by the presence and quantitative changes of diagnostic fatty acids. The stability of diagnostic fatty acids in relation to varying incubation parameters was tested for a number of bacterial isolates from biofilters representing different phylogenetic branches. For two samples, the data from the PLFA-analyses were compared with data obtained by hybridization with fluorescently labeled, rRNA-targeted oligonucleotide probes specific for the alpha-, beta- and gamma-subclass of the Proteobacteria, the Actinobacteria (Firmicutes with high G+C content) and the Firmicutes with low G+C content. These data indicated a dominating number of Proteobacteria (54% and 35% of DAPI-stained cells), in which the gamma-Proteobacteria represented the main fraction. Actinobacteria were detected in minor amounts, the number of Firmicutes with low G+C content was near the detection limit of the method. About half of the cells detected with a probe specific for Bacteria did not hybridize with the probes specific for the alpha-, beta- and gamma subclass of the Proteobacteria and the two subgroups of the Firmicutes. The results of both methods, the fluorescence in situ hybridization (FISH) and the PLFA analyses corresponded well and were best suited to confirm and complement each other.  相似文献   

9.
A new microarray method, the isotope array approach, for identifying microorganisms which consume a (14)C-labeled substrate within complex microbial communities was developed. Experiments were performed with a small microarray consisting of oligonucleotide probes targeting the 16S rRNA of ammonia-oxidizing bacteria (AOB). Total RNA was extracted from a pure culture of Nitrosomonas eutropha grown in the presence of [(14)C]bicarbonate. After fluorescence labeling of the RNA and microarray hybridization, scanning of all probe spots for fluorescence and radioactivity revealed that specific signals were obtained and that the incorporation of (14)C into rRNA could be detected unambiguously. Subsequently, we were able to demonstrate the suitability of the isotope array approach for monitoring community composition and CO(2) fixation activity of AOB in two nitrifying activated-sludge samples which were incubated with [(14)C]bicarbonate for up to 26 h. AOB community structure in the activated-sludge samples, as predicted by the microarray hybridization pattern, was confirmed by quantitative fluorescence in situ hybridization (FISH) and comparative amoA sequence analyses. CO(2) fixation activities of the AOB populations within the complex activated-sludge communities were detectable on the microarray by (14)C incorporation and were confirmed independently by combining FISH and microautoradiography. AOB rRNA from activated sludge incubated with radioactive bicarbonate in the presence of allylthiourea as an inhibitor of AOB activity showed no incorporation of (14)C and thus was not detectable on the radioactivity scans of the microarray. These results suggest that the isotope array can be used in a PCR-independent manner to exploit the high parallelism and discriminatory power of microarrays for the direct identification of microorganisms which consume a specific substrate in the environment.  相似文献   

10.
The colonization of wheat roots by Azospirillum brasilense was used as a model system to evaluate the utility of whole-cell hybridization with fluorescently labeled, rRNA-targeted oligonucleotide probes for the in situ monitoring of rhizosphere microbial communities. Root samples of agar- or soil-grown 10- and 30-day-old wheat seedlings inoculated with different strains of A. brasilense were hybridized with a species-specific probe for A. brasilense, a probe hybridizing to alpha subclass proteobacteria, and a probe specific for the domain Bacteria to identify and localize the target bacteria. After hybridization, about 10 to 25% of the rhizosphere bacteria as visualized with 4(prm1),6-diamidino-2-phenylindole (DAPI) gave sufficient fluorescence signals to be detected with rRNA-targeted probes. Scanning confocal laser microscopy was used to overcome disturbing effects arising from autofluorescence of the object or narrow depth of focus in thick specimens. This technique also allowed high-resolution analysis of the spatial distribution of bacteria in the rhizosphere. Occurrence of cells of A. brasilense Sp7 and Wa3 was restricted to the rhizosphere soil, mainly to the root hair zone. C-forms of A. brasilense were demonstrated to be physiologically active forms in the rhizosphere. Strain Sp245 also was found repeatedly at high density in the interior of root hair cells. In general, the combination of fluorescently labeled oligonucleotide probes and scanning confocal laser microscopy provided a very suitable strategy for detailed studies of rhizosphere microbial ecology.  相似文献   

11.
Viable microbes have been detected beneath several geographically distant glaciers underlain by different lithologies, but comparisons of their microbial communities have not previously been made. This study compared the microbial community compositions of samples from two glaciers overlying differing bedrock. Bulk meltwater chemistry indicates that sulfide oxidation and carbonate dissolution account for 90% of the solute flux from Bench Glacier, Alaska, whereas gypsum/anhydrite and carbonate dissolution accounts for the majority of the flux from John Evans Glacier, Ellesmere Island, Nunavut, Canada. The microbial communities were examined using two techniques: clone libraries and dot blot hybridization of 16S rRNA genes. Two hundred twenty-seven clones containing amplified 16S rRNA genes were prepared from subglacial samples, and the gene sequences were analyzed phylogenetically. Although some phylogenetic groups, including the Betaproteobacteria, were abundant in clone libraries from both glaciers, other well-represented groups were found at only one glacier. Group-specific oligonucleotide probes were developed for two phylogenetic clusters that were of particular interest because of their abundance or inferred biochemical capabilities. These probes were used in quantitative dot blot hybridization assays with a range of samples from the two glaciers. In addition to shared phyla at both glaciers, each glacier also harbored a subglacial microbial population that correlated with the observed aqueous geochemistry. These results are consistent with the hypothesis that microbial activity is an important contributor to the solute flux from glaciers.  相似文献   

12.
Plastic marine debris (PMD) affects spatial scales of life from microbes to whales. However, understanding interactions between plastic and microbes in the “Plastisphere”—the thin layer of life on the surface of PMD—has been technology‐limited. Research into microbe–microbe and microbe–substrate interactions requires knowledge of community phylogenetic composition but also tools to visualize spatial distributions of intact microbial biofilm communities. We developed a CLASI‐FISH (combinatorial labelling and spectral imaging – fluorescence in situ hybridization) method using confocal microscopy to study Plastisphere communities. We created a probe set consisting of three existing phylogenetic probes (targeting all Bacteria, Alpha‐, and Gammaproteobacteria) and four newly designed probes (targeting Bacteroidetes, Vibrionaceae, Rhodobacteraceae and Alteromonadaceae) labelled with a total of seven fluorophores and validated this probe set using pure cultures. Our nested probe set strategy increases confidence in taxonomic identification because targets are confirmed with two or more probes, reducing false positives. We simultaneously identified and visualized these taxa and their spatial distribution within the microbial biofilms on polyethylene samples in colonization time series experiments in coastal environments from three different biogeographical regions. Comparing the relative abundance of 16S rRNA gene amplicon sequencing data with cell‐count abundance data retrieved from the microscope images of the same samples showed a good agreement in bacterial composition. Microbial communities were heterogeneous, with direct spatial relationships between bacteria, cyanobacteria and eukaryotes such as diatoms but also micro‐metazoa. Our research provides a valuable resource to investigate biofilm development, succession and associations between specific microscopic taxa at micrometre scales.  相似文献   

13.
High nitrogen losses were observed in a rotating biological contactor (RBC) treating ammonium-rich (up to 500 mg NH4(+)-N/L) but organic-carbon-poor leachate from a hazardous waste landfill in K?lliken, Switzerland. The composition and spatial structure of the microbial community in the biofilm on the RBC was analyzed with specific attention for the presence of aerobic ammonium and nitrite oxidizing bacteria and anaerobic ammonium oxidizers. Anaerobic ammonium oxidation (anammox) involves the oxidation of ammonium with nitrite to N2. First the diversity of the biofilm community was determined from sequencing cloned PCR-amplified 16S rDNA fragments. This revealed the presence of a number of very unusual 16S rDNA sequences, but very few sequences related to known ammonium or nitrite oxidizing bacteria. From analysis of biofilm samples by fluorescence in situ hybridization with known phylogenetic probes and by dot-blot hybridization of the same probes to total RNA purified from biofilm samples, the main groups of microorganisms constituting the biofilm were found to be ammonium-oxidizing bacteria from the Nitrosomonas europaea/eutropha group, anaerobic ammonium-oxidizing bacteria of the "Candidatus Kuenenia stuttgartiensis" type, filamentous bacteria from the phylum Bacteroidetes, and nitrite-oxidizing bacteria from the genus Nitrospira. Aerobic and anaerobic ammonium-oxidizing bacteria were present in similar amounts of around 20 to 30% of the biomass, whereas members of the CFB phylum were present at around 7%. Nitrite oxidizing bacteria were only present in relatively low amounts (less than 5% determined with fluorescence in situ hybridization). Data from 16S rRNA dot-blot and in situ hybridization were not in all cases congruent. FISH analysis of thin-sliced and fixed biofilm samples clearly showed that the aerobic nitrifiers were located at the top of the biofilm in an extremely high density and in alternating clusters. Anammox bacteria were exclusively present in the lower half of the biofilm, whereas CFB-type filamentous bacteria were present throughout the biofilm. The structure and composition of these biofilms correlated very nicely with the proposed physiological functional separations in ammonium conversion.  相似文献   

14.
A new protocol for taxon specific probe based fluorescent in situ hybridization was developed for the identification and quantification of ciliates in microbial communities. Various fixatives and experimental parameters were evaluated and optimized with respect to cell permeability and morphological preservation. Optimum results were adaption by obatined of a modified fixation method using Bouin's solution. Furthermore, conventional staining procedures such as different Protargol stain techniques and a silver nitrate impregnation method were modified and can now be applied in combination with fluorescence in situ hybridization. The new protocol allows a rapid and reliable identification as well as quantification of ciliates based upon classical morphological aspects and rRNA based phylogenetic relationships performed in one experiment. Furthermore, a set of specific probes targeting different regions of the 18S rRNA was designed for Glaucoma scintillans Ehrenberg, 1830 and tested by applying this new approach of combining in situ cell hybridization with conventional staining techniques.  相似文献   

15.
Bacterial communities associated with a variety of benthic detritus types were studied in three streams in the context of the chemical characteristics of the sediment material and the stream water. A cell purification assay was developed for a quantitative microscopic evaluation of bacterial community structure in detritus samples by fluorescence in situ hybridization (FISH). The efficiency of FISH with fluorescently monolabelled probes was compared with FISH with signal amplification by catalysed reporter deposition (CARD-FISH). In detritus types poor in organic carbon and nitrogen, the numbers of prokaryotes were related to the chemical characteristics of the stream water column, whereas no such relationship was found for detritus types rich in organic carbon and nitrogen. These results might help to provide criteria for the selection of detritus types for river ecosystem assessment and monitoring. The percentage of bacteria detected by FISH with monolabelled probes was correlated with the detritus total organic matter (OM). This is likely attributed to a higher ribosome content of microbial cells on substrates rich in OM. Cell detection by CARD-FISH did not show any correlation with OM content, indicating that this technique renders the results more independent from the activity state of cells. Fluorescence in situ hybridization with four group-specific probes suggested a relationship between substrate quality and the composition of the microbial assemblages on the various types of detritus. The improved protocol for cell purification and CARD-FISH may facilitate future investigations on the relationship between the riverine benthic detritus quality and microbial community composition.  相似文献   

16.
Viable microbes have been detected beneath several geographically distant glaciers underlain by different lithologies, but comparisons of their microbial communities have not previously been made. This study compared the microbial community compositions of samples from two glaciers overlying differing bedrock. Bulk meltwater chemistry indicates that sulfide oxidation and carbonate dissolution account for 90% of the solute flux from Bench Glacier, Alaska, whereas gypsum/anhydrite and carbonate dissolution accounts for the majority of the flux from John Evans Glacier, Ellesmere Island, Nunavut, Canada. The microbial communities were examined using two techniques: clone libraries and dot blot hybridization of 16S rRNA genes. Two hundred twenty-seven clones containing amplified 16S rRNA genes were prepared from subglacial samples, and the gene sequences were analyzed phylogenetically. Although some phylogenetic groups, including the Betaproteobacteria, were abundant in clone libraries from both glaciers, other well-represented groups were found at only one glacier. Group-specific oligonucleotide probes were developed for two phylogenetic clusters that were of particular interest because of their abundance or inferred biochemical capabilities. These probes were used in quantitative dot blot hybridization assays with a range of samples from the two glaciers. In addition to shared phyla at both glaciers, each glacier also harbored a subglacial microbial population that correlated with the observed aqueous geochemistry. These results are consistent with the hypothesis that microbial activity is an important contributor to the solute flux from glaciers.  相似文献   

17.
The response of river water microbial communities to chemical compounds was monitored under laboratory conditions using aniline as a model. Bacteria were collected from unpolluted and polluted sites. Bacterial abundance (plate and total direct counting) and its relation to aniline biodegradation was examined. Colony hybridization with 16S rRNA oligonucleotide probes was used to study the changes in microbial community structure during biodegradation of aniline. The changes in bacterial abundance and community structure were related to biodegradation of aniline. Burkholderia–Pseudomonas (rRNA group III), an authentic Alcaligenes group became dominant despite the initial differences in the microbial communities, suggesting that these genera are the main aniline degraders in the aquatic environment.  相似文献   

18.
We propose a novel method for studying the function of specific microbial groups in situ. Since natural microbial communities are dynamic both in composition and in activities, we argue that the microbial "black box" should not be regarded as homogeneous. Our technique breaks down this black box with group-specific fluorescent 16S rRNA probes and simultaneously determines 3H-substrate uptake by each of the subgroups present via microautoradiography (MAR). Total direct counting, fluorescent in situ hybridization, and MAR are combined on a single slide to determine (i) the percentages of different subgroups in a community, (ii) the percentage of total cells in a community that take up a radioactively labeled substance, and (iii) the distribution of uptake within each subgroup. The method was verified with pure cultures. In addition, in situ uptake by members of the alpha subdivision of the class Proteobacteria (alpha-Proteobacteria) and of the Cytophaga-Flavobacterium group obtained off the California coast and labeled with fluorescent oligonucleotide probes for these subgroups showed that not only do these organisms account for a large portion of the picoplankton community in the sample examined ( approximately 60% of the universal probe-labeled cells and approximately 50% of the total direct counts), but they also are significant in the uptake of dissolved amino acids in situ. Nearly 90% of the total cells and 80% of the cells belonging to the alpha-Proteobacteria and Cytophaga-Flavobacterium groups were detectable as active organisms in amino acid uptake tests. We suggest a name for our triple-labeling technique, substrate-tracking autoradiographic fluorescent in situ hybridization (STARFISH), which should aid in the "dissection" of microbial communities by type and function.  相似文献   

19.
This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantly Bacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% beta- and gamma-Proteobacteria (B+G), 31 to 35% alpha-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65% of the Bacteria community was no longer identifiable by the phylum or subclass probes used. The latter result suggested that toluene exposure fostered the proliferation of phylotype(s) that were otherwise minor constituents of the FC aquifer community. These studies demonstrated that alterations in aquifer microbial communities resulting from specific anthropogenic perturbances can be inferred from microcosm studies integrating chemical and phylogenetic probe analysis and in the case of hydrocarbon contamination may facilitate the identification of organisms important for in situ biodegradation processes. Further work integrating and coordinating microcosm and field experiments is needed to explore how differences in scale, substrate complexity, and other hydrogeological conditions may affect patterns observed in these systems.  相似文献   

20.
The potential for comparing microbial community population structures has been greatly enhanced by developments in next generation sequencing methods that can generate hundreds of thousands to millions of reads in a single run. Conversely, many microbial community comparisons have been published with no more than 1,000 sequences per sample. These studies have presented data on levels of shared operational taxonomic units (OTUs) between communities. Due to lack of coverage, that approach might compromise the conclusions about microbial diversity and the degree of difference between environments. In this study, we present data from recent studies that highlight this problem. Also, we analyzed datasets of 16 rRNA sequences with small and high sequence coverage from different environments to demonstrate that the level of sequencing effort used for analyzing microbial communities biases the results. We randomly sampled pyrosequencing-generated 16S rRNA gene libraries with increasing sequence effort. Sequences were used to calculate Good's coverage, the percentage of shared OTUs, and phylogenetic distance measures. Our data showed that simple counts of presence/absence of taxonomic unities do not reflect the real similarity in membership and structure of the bacterial communities and that community comparisons based on phylogenetic tests provide a way to test statistically significant differences between two or more environments without need an exhaustive sampling effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号