首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing 18F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection.

Methods

Two breast cancer patients were evaluated. 18F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered 18F-FDG dose.

Results

One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions.

Conclusion

Immediate preoperative and postoperative PET/CT imaging, utilizing the same 18F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and verifying resection of 18F-FDG positive tumors and may ultimately positively impact upon long-term patient outcomes.
  相似文献   

2.
~(18)F-FDG PET/CT常规代谢成像反应肿瘤的葡萄糖代谢及乏氧情况,而~(18)F-FDG PET/CT早期动态成像能反映PET/CT成像早期肿瘤的灌注情况。由于肿瘤的异质性,在早期动态~(18)F-FDG PET/CT成像,即~(18)F-FDG PET/CT灌注成像中,存在独立于常规60 min~(18)F-FDG PET/CT代谢成像的SUVmax(最大标准摄取值)高摄取区。因此,在临床工作中应用~(18)F-FDG PET/CT早期动态成像,能够进一步对实体肿瘤的活性区域进行评估,能够更好评价患者预后、完善治疗方案。当前~(18)F-FDG早期动态成像已经应用在肝癌、肾癌以及膀胱癌等实体肿瘤诊断中。早期动态~(18)F-FDG PET/CT成像结合常规标准~(18)F-FDG PET/CT代谢成像,对实体肿块进行一站式成像方法,能够更好的对肿瘤进行评估。  相似文献   

3.
《Médecine Nucléaire》2023,47(4):208-210
We report a multimetastatic follicular thyroid carcinoma(FTC) with match lesions between 18F-FDG PET/CT and post-treatment 131I imaging. The patient had a history of thoracic vertebra corpectomy surgery and liver tru-cut biopsy; both resulted in metastases of FTC. After total thyroidectomy surgery, the patient was referred to the 18F-FDG PET/CT to investigate other possible metastatic foci. 18F-FDG PET/CT showed increased FDG uptakes on a cervical lymph node, bones, lung, liver, and pancreas. After treatment of 131I, post-treatment iodine scintigraphy demonstrated iodine uptakes in the same areas as the 18F-FDG PET/CT scan and at the thyroid bed. All the matched lesions were concluded as a spread of the FTC. Here we describe an infrequent differentiated thyroid carcinoma case with metastases to the liver and pancreas. This case report also highlights the importance of 18F-FDG PET/CT in determining the extent of thyroid cancer.  相似文献   

4.
《Médecine Nucléaire》2023,47(4):200-207
ObjectiveOur aim in this retrospective study was to compare the diagnostic accuracy of 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in detecting bone metastases of various cancers and to evaluate the potential usefulness of 68Ga-FAPI-04 PET/CT in detecting metastatic bone disease.Material and methodOur retrospective study included 44 patients diagnosed with bone metastases due to various cancers between January 2021 and February 2022. All patients underwent 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT imaging within 14 days. In the semi-quantitative analysis of the skeletal system, all regions with higher uptake than background activity were considered pathological. SUVmax and Metastasis-to-background ratio (TBR) values were calculated from metastatic sites.ResultsA total of 827 bone metastases were detected in our study. The diagnostic accuracies of FAPI PET/CT and 18F-FDG PET/CT were 91.8% and 81.5%, respectively (P < 0.001). When all bone metastases were compared, the SUVmax of 68Ga-FAPI-04 PET/CT was statistically significantly higher than that of 18F-FDG PET/CT (median 6.15 vs. 5.2; P < 0.001). When FDG and FAPI SUVmax values were compared according to metastasis types, FAPI SUVmax and TBR values in osteolytic, medullary and mixed type bone metastases were found to be statistically significantly higher than FDG (P-values: < 0.001, < 0.001, < 0.001, respectively). There was no statistically significant difference between FDG and FAPI SUVmax values in osteoblastic bone metastases (P = 0.26).ConclusionIt has been shown that 68Ga-FAPI-04 PET/CT is superior to 18F-FDG PET/CT in detecting metastatic bone disease and may have more clinical impact on disease management.  相似文献   

5.

Background and Aim

The utility of fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET/CT) in initial staging of hepatocellular carcinoma (HCC) has yet to be fully explored. We assessed the usefulness of 18F-FDG PET/CT in initial staging of HCC.

Methods

A total of 457 consecutive patients initially diagnosed with HCC at Seoul National University Hospital between 2006 and 2012 were evaluated retrospectively to assess the impact of 18F-FDG PET/CT on staging and compliancy with Milan criteria, relative to dynamic CT of liver and chest x-ray.

Results

Seven among the 457 patients studied showed a shift in Barcelona Clinic Liver Cancer [BCLC] stage (A→C: 6 patients; B→C: 1 patient) and 5 patients who had originally met Milan criteria no longer qualified. 18F-FDG PET/CT had value in initial staging of early (stage A) or intermediate (stage B) HCC, as determined by dynamic CT of liver and BCLC or AJCC classifications, whereas BCLC stage 0 and stage C tumors were unchanged (P<0.001). 18F-FDG PET/CT disclosed additional metastases in patients with American Joint Committee on Cancer [AJCC] T2 (2.7%), T3a (5.3%), and T3b (4.8%) classifications.

Conclusions

In initial staging of HCC, 18F-FDG PET/CT provided additional information, impacting the patients with BCLC (stages A and B) and AJCC (T2 and T3) classifications. Its use might be thus appropriate for these patient subsets, especially if hepatic resection or liver transplantation is planned.  相似文献   

6.

Objective

Based on the results of a recently accomplished multicenter clinical trial for the incremental value of a dual-tracer (18F-FDG and 18F-FLT), dual-modality (PET and CT) imaging in the differential diagnosis of pulmonary lesions, we investigate some issues that might affect the image interpretation and result reporting.

Methods

The images were read in two separate sessions. Firstly the images were read and reported by physician(s) of the imaging center on completion of each PET/CT scanning. By the end of MCCT, all images collected during the trial were re-read by a collective of readers in an isolated, blinded, and independent way.

Results

One hundred sixty two patients successfully passed the data verification and entered into the final analysis. The primary reporting result showed adding 18F-FDG image information did not change the clinical performance much in sensitivity, specifity and accuracy, but the ratio between SUVFLT and SUVFDG did help the differentiation efficacy among the three subgroups of patients. The collective reviewing result showed the diagnostic achievement varied with reading strategies. ANOVA indicated significant differences among 18F-FDG, 18F- FLT in SUV (F = 14.239, p = 0.004). CT had almost the same diagnostic performance as 18F-FLT. When the 18F-FDG, 18F- FLT and CT images read in pair, both diagnostic sensitivity and specificity improved. The best diagnostic figures were obtained in full-modality strategy, when dual-tracer PET worked in combination with CT.

Conclusions

With certain experience and training both radiologists and nuclear physicians are qualified to read and to achieve the similar diagnostic accuracy in PET/CT study. Making full use of modality combination and selecting right criteria seems more practical than professional back ground and personal experience in the new hybrid imaging technology, at least when novel tracer or application is concerned.  相似文献   

7.

Purpose

Respiratory motion causes substantial artifacts in reconstructed PET images when using helical CT as the attenuation map in PET/CT imaging. In this study, we aimed to reduce the respiratory artifacts in PET/CT images of patients with lung tumors using an abdominal compression device.

Methods

Twelve patients with lung cancer located in the middle or lower lobe of the lung were recruited. The patients were injected with 370 MBq of 18F-FDG. During PET, the patients assumed two bed positions for 1.5 min/bed. After conducting free-breathing imaging, we obtained images of the patients with abdominal compression by applying the same setup used in the free-breathing scan. The differences in the standardized uptake value (SUV)max, SUVmean, tumor volume, and the centroid of the tumors between PET and various CT schemes were measured.

Results

The SUVmax and SUVmean derived from PET/CT imaging using an abdominal compression device increased for all the lesions, compared with those obtained using the conventional approach. The percentage increases were 18.1% ±14% and 17% ±16.8% for SUVmax and SUVmean, respectively. PET/CT imaging combined with abdominal compression generally reduced the tumor mismatch between CT and the corresponding attenuation corrected PET images, with an average decrease of 1.9±1.7 mm over all the cases.

Conclusions

PET/CT imaging combined with abdominal compression reduces respiratory artifacts and PET/CT misregistration, and enhances quantitative SUV in tumor. Abdominal compression is easy to set up and is an effective method used in PET/CT imaging for clinical oncology, especially in the thoracic region.  相似文献   

8.

Purpose

(S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid (18F-FSPG) is a novel radiopharmaceutical for Positron Emission Tomography (PET) imaging. It is a glutamate analogue that can be used to measure xC- transporter activity. This study was performed to assess the feasibility of 18F-FSPG for imaging orthotopic brain tumors in small animals and the translation of this approach in human subjects with intracranial malignancies.

Experimental Design

For the small animal study, GS9L glioblastoma cells were implanted into brains of Fischer rats and studied with 18F-FSPG, the 18F-labeled glucose derivative 18F-FDG and with the 18F-labeled amino acid derivative 18F-FET. For the human study, five subjects with either primary or metastatic brain cancer were recruited (mean age 50.4 years). After injection of 300 MBq of 18F-FSPG, 3 whole-body PET/Computed Tomography (CT) scans were obtained and safety parameters were measured. The three subjects with brain metastases also had an 18F-FDG PET/CT scan. Quantitative and qualitative comparison of the scans was performed to assess kinetics, biodistribution, and relative efficacy of the tracers.

Results

In the small animals, the orthotopic brain tumors were visualized well with 18F-FSPG. The high tumor uptake of 18F-FSPG in the GS9L model and the absence of background signal led to good tumor visualization with high contrast (tumor/brain ratio: 32.7). 18F-FDG and 18F-FET showed T/B ratios of 1.7 and 2.8, respectively. In the human pilot study, 18F-FSPG was well tolerated and there was similar distribution in all patients. All malignant lesions were positive with 18F-FSPG except for one low-grade primary brain tumor. In the 18F-FSPG-PET-positive tumors a similar T/B ratio was observed as in the animal model.

Conclusions

18F-FSPG is a novel PET radiopharmaceutical that demonstrates good uptake in both small animal and human studies of intracranial malignancies. Future studies on larger numbers of subjects and a wider array of brain tumors are planned.

Trial Registration

ClinicalTrials.gov NCT01186601  相似文献   

9.

Introduction

2-Deoxy-2-[18F]fluoro-D-glucose PET/CT is a well-established imaging method for staging, restaging and therapy-control in human medicine. In veterinary medicine, this imaging method could prove to be an attractive and innovative alternative to conventional imaging in order to improve staging and restaging. The aim of this study was both to evaluate the effectiveness of this image-guided method in canine patients with spontaneously occurring cancer as well as to illustrate the dog as a well-suited animal model for comparative oncology.

Methods

Ten dogs with various malignant tumors were included in the study and underwent a whole body FDG PET/CT. One patient has a second PET-CT 5 months after the first study. Patients were diagnosed with histiocytic sarcoma (n = 1), malignant lymphoma (n = 2), mammary carcinoma (n = 4), sertoli cell tumor (n = 1), gastrointestinal stromal tumor (GIST) (n = 1) and lung tumor (n = 1). PET/CT data were analyzed with the help of a 5-point scale in consideration of the patients’ medical histories.

Results

In seven of the ten dogs, the treatment protocol and prognosis were significantly changed due to the results of FDG PET/CT. In the patients with lymphoma (n = 2) tumor extent could be defined on PET/CT because of increased FDG uptake in multiple lymph nodes. This led to the recommendation for a therapeutic polychemotherapy as a treatment. In one of the dogs with mammary carcinoma (n = 4) and in the patient with the lung tumor (n = 1), surgery was cancelled due to the discovery of multiple metastasis. Consequently no treatment was recommended.

Conclusion

FDG PET/CT offers additional information in canine patients with malignant disease with a potential improvement of staging and restaging. The encouraging data of this clinical study highlights the possibility to further improve innovative diagnostic and staging methods with regard to comparative oncology. In the future, performing PET/CT not only for staging but also in therapy control could offer a significant improvement in the management of dogs with malignant tumors.  相似文献   

10.

Background

Orthotopic endometrial cancer models provide a unique tool for studies of tumour growth and metastatic spread. Novel preclinical imaging methods also have the potential to quantify functional tumour characteristics in vivo, with potential relevance for monitoring response to therapy.

Methods

After orthotopic injection with luc-expressing endometrial cancer cells, eleven mice developed disease detected by weekly bioluminescence imaging (BLI). In parallel the same mice underwent positron emission tomography–computed tomography (PET-CT) and magnetic resonance imaging (MRI) employing 18F-fluorodeoxyglocose (18F-FDG) or 18F- fluorothymidine (18F-FLT) and contrast reagent, respectively. The mice were sacrificed when moribund, and post-mortem examination included macroscopic and microscopic examination for validation of growth of primary uterine tumours and metastases. PET-CT was also performed on a patient derived model (PDX) generated from a patient with grade 3 endometrioid endometrial cancer.

Results

Increased BLI signal during tumour growth was accompanied by increasing metabolic tumour volume (MTV) and increasing MTV x mean standard uptake value of the tumour (SUVmean) in 18F-FDG and 18F-FLT PET-CT, and MRI conspicuously depicted the uterine tumour. At necropsy 82% (9/11) of the mice developed metastases detected by the applied imaging methods. 18F-FDG PET proved to be a good imaging method for detection of patient derived tumour tissue.

Conclusions

We demonstrate that all imaging modalities enable monitoring of tumour growth and metastatic spread in an orthotopic mouse model of endometrial carcinoma. Both PET tracers, 18F-FDG and 18F-FLT, appear to be equally feasible for detecting tumour development and represent, together with MRI, promising imaging tools for monitoring of patient-derived xenograft (PDX) cancer models.  相似文献   

11.

Background

More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay.

Methodology/Principal Findings

μCT and 18F-FDG μPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced μCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis.

Conclusions/Significance

The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgenic animal models may possibly enable short-term cancer bioassays to significantly improve hazard identification and follow-up examinations of different organs by non-invasive methods.  相似文献   

12.

Aim

To study whether 18F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between 18F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE−/− mice.

Methods

Nine groups of apoE−/− mice were given normal chow or high-fat diet. At different time-points, 18F-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from the tissue, and gene expression of chemo (C-X-C motif) ligand 1 (CXCL-1), monocyte chemoattractant protein (MCP)-1, vascular cell adhesion molecule (VCAM)-1, cluster of differentiation molecule (CD)-68, osteopontin (OPN), lectin-like oxidized LDL-receptor (LOX)-1, hypoxia-inducible factor (HIF)-1α, HIF-2α, vascular endothelial growth factor A (VEGF), and tissue factor (TF) was measured by means of qPCR.

Results

The uptake of 18F-FDG increased over time in the groups of mice receiving high-fat diet measured by PET and ex vivo gamma counting. The gene expression of all examined markers of atherosclerosis correlated significantly with 18F-FDG uptake. The strongest correlation was seen with TF and CD68 (p<0.001). A multivariate analysis showed CD68, OPN, TF, and VCAM-1 to be the most important contributors to the uptake of 18F-FDG. Together they could explain 60% of the 18F-FDG uptake.

Conclusion

We have demonstrated that 18F-FDG can be used to follow the progression of atherosclerosis in apoE−/− mice. The gene expression of ten molecular markers representing different molecular processes important for atherosclerosis was shown to correlate with the uptake of 18F-FDG. Especially, the gene expressions of CD68, OPN, TF, and VCAM-1 were strong predictors for the uptake.  相似文献   

13.

Background

18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of18F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized CH2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaCH2), radiolabeled with iodine-124 (124I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.

Methods

HuCC49deltaCH2 was radiolabeled with124I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of124I-HuCC49deltaCH2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of18F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.

Results

At approximately 1 hour after i.v. injection,124I-HuCC49deltaCH2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection,124I-HuCC49deltaCH2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection,124I-HuCC49deltaCH2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection,18F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.

Conclusions

On microPET imaging,124I-HuCC49deltaCH2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while18F-FDG failed to demonstrate this. The antigen-directed and cancer-specific124I-radiolabled anti-TAG-72 monoclonal antibody conjugate,124I-HuCC49deltaCH2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.  相似文献   

14.

Objective

To study the correlation between 18F-FDG uptake and cell proliferation in cancer patients by meta-analysis of published articles.

Methods

We searched PubMed (MEDLINE included), EMBASE, and Cochrane Database of Systematic Review, and selected research articles on the relationship between 18F-FDG uptake and Ki-67 expression (published between August 1, 1994-August 1, 2014), according to the literature inclusion and exclusion criteria. The publishing language was limited to English. The quality of included articles was evaluated according to the Quality Assessment of Diagnosis Accuracy Studies-2 (QUADAS-2). The correlation coefficient (r) was extracted from the included articles and processed by Fisher''s r-to-z transformation. The combined correlation coefficient (r) and the 95% confidence interval (CI) were calculated with STATA 11.0 software under a random-effects model. Begg''s test was used to analyze the existence of publication bias and draw funnel plot, and the sources of heterogeneity were explored by sensitivity and subgroup analyses.

Results

According to the inclusion and exclusion criteria, 79 articles were finally included, including 81 studies involving a total of 3242 patients. All the studies had a combined r of 0.44 (95% CI, 0.41-0.46), but with a significant heterogeneity (I2 = 80.9%, P<0.01). Subgroup analysis for different tumor types indicated that most subgroups showed a reduced heterogeneity. Malignant melanoma (n = 1) had the minimum correlation coefficient (-0.22) between 18F-FDG uptake and Ki-67 expression, while the thymic epithelial tumors (TETs; n = 2) showed the maximum correlation coefficient of 0.81. The analytical results confirmed that correlation between 18F-FDG uptake and Ki-67 expression was extremely significant in TETs, significant in gastrointestinal stromal tumors (GISTs), moderate in patients with lung, breast, bone and soft tissue, pancreatic, oral, thoracic, and uterine and ovarian cancers, average in brain, esophageal and colorectal cancers, and poor in head and neck, thyroid, gastric and malignant melanoma tumors. Subgroup analysis indicated that positron emission tomography (PET) or PET/CT imaging technology or Ki-67 and standardized uptake value (SUV) measurement technology did not significantly affect the results of r values, and Begg''s test showed no significant publication bias.

Conclusion

In cancer patients, 18F-FDG uptake showed a moderate positive correlation with tumor cell proliferation. Different tumor types exhibited varied degree of correlation, and the correlation was significant in TETs and GSTs. However, our results need further validation by clinical trials with a large sample of different tumor types.  相似文献   

15.

Objective

To evaluate the clinical value of 16α-[18F]fluoroestradiol (18F-FES) PET/CT in assisting the individualized treatment decisions of breast cancer patients.

Methods

Thirty-three breast cancer patients, who underwent both 18F-FES and 18F-FDG PET/CT from July 2010 to March 2013 in our center, were enrolled in this preliminary study. All the patients used 18F-FES PET/CT as a diagnostic tool with a clinical dilemma. We used the maximum Standardized Uptake Value (SUVmax) to quantify ER expression and a cutoff value of 1.5 to dichotomize results into ER positive and negative lesions. All patients were clinically followed up at least 6 months.

Results

In evaluating equivocal lesions on conventional work-up group (n = 4), three lung lesions and another iliac lesion were enrolled. As for three lung lesions, 18F-FES PET/CT showed one lesion with high uptake, which suggested it was an ER positive metastasis. The other two lesions were 18F-FES negative, which meant an ER negative metastasis or secondary primary tumor. Additionally, one iliac lesion was detected by MRI. 18F-FDG uptake was high at the suspected lesion, whereas 18F-FES uptake was absent; In predicting origin of metastasis group (n = 2), two breast cancer patients had secondary primary tumors were collected. They were 18F-FES negative, which showed low possibility of metastasis from breast cancer and they were all confirmed by biopsy. In detecting ER status in metastasis group (n = 27), 18F-FES PET/CT showed increased 18F-FES uptake in all metastatic lesions in 11 patients; absent in all lesions in 13 patients; and the remaining 3 patients had both 18F-FES positive and negative lesions. Totally, on the basis of the 18F-FES PET/CT results, we found changes in the treatment plans in 16 patients (48.5%, 16/33).

Conclusions

18F-FES PET/CT could assess the entire tumor volume receptor status; therefore, it may be used to assist the individualized treatment decisions of breast cancer patients.  相似文献   

16.

Objective

To assess the clinical value of dual tracers Positron emission tomography/computed tomography (PET/CT) 18F-fluoroestradiol (18F-FES) and 18F-fluorodeoxyglucose (18F-FDG) in predicting neoadjuvant chemotherapy response (NAC) of breast cancer.

Methods

Eighteen consecutive patients with newly diagnosed, non-inflammatory, stage II and III breast cancer undergoing NAC were included. Before chemotherapy, they underwent both 18F-FES and 18F-FDG PET/CT scans. Surgery was performed after three to six cycles of chemotherapy. Tumor response was graded and divided into two groups: the responders and non-responders. We used the maximum standardized uptake value (SUVmax) to qualify each primary lesion.

Results

Pathologic analysis revealed 10 patients were responders while the other 8 patients were non-responders. There was no statistical difference of SUVmax-FDG and tumor size between these two groups (P>0.05). On the contrary, SUVmax-FES was lower in responders (1.75±0.66 versus 4.42±1.14; U=5, P=0.002); and SUVmax-FES/FDG also showed great value in predicting outcome (0.16±0.06 versus 0.54±0.22; U=5, P=0.002).

Conclusions

Our study showed 18F-FES PET/CT might be feasible to predict response of NAC. However, whether the use of dual tracers 18F-FES and 18F-FDG has complementary value should be further studied.  相似文献   

17.
《Médecine Nucléaire》2022,46(3):156-163
BackgroundNative valve endocarditis (NVE) is a rare but serious disease. The prognosis depends on the rapidity of diagnosis, and is currently based on modified Duke criteria, where echocardiography has a key role but may lack sensitivity if valves are calcified. For prosthetic valves, the European Society of Cardiology 2015 recommendations added 18F-FDG PET/CT as a major imaging criterion as well as for extension assessment. This study evaluated the diagnostic accuracy of 18F-FDG PET/CT in NVE and in extension assessment.MethodsThis retrospective study involved 59 patients suspected of NVE at Bordeaux university hospital between 2011 and 2019 and received 18F-FDG PET/CT. The final diagnosis was established according to Duke criteria after 3 months of management. Infective endocarditis (IE) was assessed in the initial phase according to the Duke criteria. All PET/CTs were blindly reviewed jointly by a junior and senior nuclear-medicine physician.ResultsIn total, 59 patients were included. At 3 months, 26 patients had definite IE, 22 had rejected IE, and 11 possible IE. Twelve patients had positive PET/CT results. The sensitivity of the modified Duke criteria in the initial phase was 77% and the specificity was 81%. When combined with 18F-FDG PET/CT, the sensitivity of the Duke criteria increased to 96% and the specificity was 81%. The sensitivity of 18F-FDG PET/CT alone was 46%. All three patients with perivalvular abscess had positive PET/CT results. Of the 22 patients with NVE definite at 3 months, fourteen (54%) had at least one septic embolism diagnosed on PET/CT.ConclusionsThe implementation of 18F-FDG PET/CT with modified Duke criteria increased the sensitivity for NVE diagnosis in the initial phase and contributed to IE extension assessment. It may contribute to making the diagnosis of a local cardiac complication.  相似文献   

18.
孤立性肺结节的鉴别诊断一直是胸部影像学的研究热点。早期且准确地鉴别肺内小结节的良恶性,对于患者治疗方案的确定以及随访情况的评估均具有重要的临床意义。~(18)F-FDG PET/CT在鉴别诊断恶性肿瘤方面具有明显优于其他传统检查的高特异性和高敏感性,其公认的恶性肿瘤的诊断阈值是最大化标准摄取值(maximum standard uptake value, SUVmax)为2.5,然而部分临床数据显示一些直径小于1 cm的恶性肺结节的SUVmax数值小于2.5。因此在早期研究中,~(18)F-FDG PET/CT在诊断直径较小的肺结节的其临床价值仍存在争议。为了尽量降低SUVmax的测量误差,提高~(18)F-FDG PET/CT诊断的准确率,衍生出了许多SUVmax辅助诊断方法以及优化的重建算法、放射性显像剂的联合应用等手段。本文将对~(18)F-FDG PET/CT鉴别诊断直径小于1 cm孤立性肺结节的研究进展进行综述。  相似文献   

19.

Objectives

Glucose metabolism, perfusion, and water diffusion may have a relationship or affect each other in the same tumor. The understanding of their relationship could expand the knowledge of tumor characteristics and contribute to the field of oncologic imaging. The purpose of this study was to evaluate the relationships between metabolism, vasculature and cellularity of advanced hepatocellular carcinoma (HCC), using multimodality imaging such as 18F-FDG positron emission tomography (PET), dynamic contrast enhanced (DCE)-MRI, and diffusion weighted imaging(DWI).

Materials and Methods

Twenty-one patients with advanced HCC underwent 18F-FDG PET, DCE-MRI, and DWI before treatment. Maximum standard uptake values (SUVmax) from 18F-FDG-PET, variables of the volume transfer constant (Ktrans) from DCE-MRI and apparent diffusion coefficient (ADC) from DWI were obtained for the tumor and their relationships were examined by Spearman’s correlation analysis. The influence of portal vein thrombosis on SUVmax and variables of Ktrans and ADC was evaluated by Mann-Whitney test.

Results

SUVmax showed significant negative correlation with Ktrans max (ρ = −0.622, p = 0.002). However, variables of ADC showed no relationship with variables of Ktrans or SUVmax (p>0.05). Whether portal vein thrombosis was present or not did not influence the SUV max and variables of ADC and Ktrans (p>0.05).

Conclusion

In this study, SUV was shown to be correlated with Ktrans in advanced HCCs; the higher the glucose metabolism a tumor had, the lower the perfusion it had, which might help in guiding target therapy.  相似文献   

20.

Background

Integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is widely performed for staging solitary pulmonary nodules (SPNs). However, the diagnostic efficacy of SPNs based on PET/CT is not optimal. Here, we propose a method of detection based on PET/CT that can differentiate malignant and benign SPNs with few false-positives.

Method

Our proposed method combines the features of positron-emission tomography (PET) and computed tomography (CT). A dynamic threshold segmentation method was used to identify lung parenchyma in CT images and suspicious areas in PET images. Then, an improved watershed method was used to mark suspicious areas on the CT image. Next, the support vector machine (SVM) method was used to classify SPNs based on textural features of CT images and metabolic features of PET images to validate the proposed method.

Results

Our proposed method was more efficient than traditional methods and methods based on the CT or PET features alone (sensitivity 95.6%; average of 2.9 false positives per scan).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号