首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective immunotherapy of cancer by DNA vaccination.   总被引:11,自引:0,他引:11  
Direct injection of naked plasmid DNA either intramuscularly or intradermally induces strong, long-lived cell-mediated and humoral immune responses to the antigen encoded by the gene vaccine. In the present study, we used gene vaccination with naked plasmid DNA to induce prophylactic immune responses to tumor associated antigens. MAGE-1 (melanoma antigen 1) is an ideal candidate for cancer vaccines because it belongs to a family of genes that are expressed in a number of human tumors of various histological types but not in normal adult tissues except for the testis, and because both humoral and cell-mediated immune responses against MAGE-1 antigen were detected in tumor patients. Intradermal administration of plasmid DNA encoding MAGE-1 (pcMAGE1) induced anti-MAGE-1-specific antibody in BALB/c mice. In contrast, no detectable level of anti-MAGE-1 antibody was induced by intramuscular injection of pcMAGE1. Also, intradermal injection of pcMAGE1 was capable of generating CTLs reactive with MAGE-1-transfected murine tumor cells, M-MSV-MAGE1. Most of the mice (8 out of 10) immunized with pcMAGE1 rejected the challenge of M-MSV-MAGE1 tumor cells, compared with control animals most of which developed tumors. This suggests that intradermal DNA vaccination could provide a novel immunotherapy of cancer.  相似文献   

2.
DNA or nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To engineer the immune response in vivo towards more T-helper (Th)1-type cellular responses, we investigated the co-delivery of inteferon (IFN)-gamma, interleukin (IL)-12, and IL-18 genes along with DNA vaccine constructs. We observed that both antigen-specific humoral and cellular immune responses can be modulated through the use of cytokine adjuvants in mice. Most of this work has been performed in rodent models. There has been little confirmation of this technology in primates. We also evaluated the immunomodulatory effects of this approach in rhesus macaques, since non-human primates represent the most relevant animal models for human immunodeficiency virus (HIV) vaccine studies. As in the murine studies, we also observed that each Th1 cytokine adjuvant distinctively regulated the level of immune responses generated. Co-immunization of IFN-gamma and IL-18 in macaques enhanced the level of antigen-specific antibody responses. Similarly, co-delivery of IL-12 and IL-18 also enhanced the level of antigen-specific Th proliferative responses. These results extend this adjuvant strategy in a more relevant primate model and support the potential utility of these molecular adjuvants in DNA vaccine regimens.  相似文献   

3.
DNA-plasmids of HIV-1 induce systemic and mucosal immune responses   总被引:4,自引:0,他引:4  
DNA-based immunization has been shown to induce protective immunity against several microbial pathogens including HIV-1. Several routes of DNA vaccination have been exploited. However, the properties of the immune responses seem to differ with the different routes used for DNA delivery, ultimately affecting the outcome of experimental challenge. We measured the primary immune response following one vaccination. This report presents differences associated with three different DNA delivery routes: intramuscular injection, intranasal application, and gene-gun based immunization. Induction of systemic humoral immune responses was achieved most efficiently by either intranasal or gene-gun mediated immunization, followed by intramuscular injection. Mucosal IgA was reproducibly induced by intranasal instillation of the DNA, and found in lung washings, faeces, and vaginal washings. Cytotoxic T cells were not induced by a single immunization, but were observed after three immunizations using intramuscular injections.  相似文献   

4.
Vaccination by a mucosal route is an excellent approach to the control of mucosally acquired infections. Several reports on rodents suggest that DNA vaccines can be used to achieve mucosal immunity when applied to mucosal tissues. However, with the exception of one study with pigs and another with horses, there is no information on mucosal DNA immunization of the natural host. In this study, the potential of inducing mucosal immunity in cattle by immunization with a DNA vaccine was demonstrated. Cattle were immunized with a plasmid encoding bovine herpesvirus 1 (BHV-1) glycoprotein B, which was delivered with a gene gun either intradermally or intravulvomucosally. Intravulvomucosal DNA immunization induced strong cellular immune responses and primed humoral immune responses. This was evident after BHV-1 challenge when high levels of both immunoglobulin G (IgG) and IgA were detected. Intradermal delivery resulted in lower levels of immunity than mucosal immunization. To determine whether the differences between the immune responses induced by intravulvomucosal and intradermal immunizations might be due to the efficacy of antigen presentation, the distributions of antigen and Langerhans cells in the skin and mucosa were compared. After intravulvomucosal delivery, antigen was expressed early and throughout the mucosa, but after intradermal administration, antigen expression occurred later and superficially in the skin. Furthermore, Langerhans cells were widely distributed in the mucosal epithelium but found primarily in the basal layers of the epidermis of the skin. Collectively, these observations may account for the stronger immune response induced by mucosal administration.  相似文献   

5.
An important limitation of DNA immunization in nonhuman primates is the difficulty in generating high levels of antigen-specific antibody responses; strategies to enhance the level of immune responses to DNA immunization may be important in the further development of this vaccine strategy for humans. We approached this issue by testing the ability of molecular adjuvants to enhance the levels of immune responses generated by multicomponent DNA vaccines in rhesus macaques. Rhesus macaques were coimmunized intramuscularly with expression plasmids bearing genes encoding Th1 (interleukin 2 [IL-2] and gamma interferon)- or Th2 (IL-4)-type cytokines and DNA vaccine constructs encoding human immunodeficiency virus Env and Rev and simian immunodeficiency virus Gag and Pol proteins. We observed that the cytokine gene adjuvants (especially IL-2 and IL-4) significantly enhanced antigen-specific humoral immune responses in the rhesus macaque model. These results support the assumption that antigen-specific responses can be engineered to a higher and presumably more desirable level in rhesus macaques by genetic adjuvants.  相似文献   

6.
Interferon regulatory factor 1 (IRF-1), IRF-3, and IRF-7 have been tested as genetic adjuvants for influenza virus hemagglutinin (HA) and nucleoprotein vaccine DNAs. Cotransfection of HA with IRF-3 and IRF-7 increased CD4 T-cell responses by 2- to 4-fold and CD8 T-cell responses by more than 10-fold. Following intramuscular deliveries of DNA, both CD4 and CD8 T cells were biased towards type 1 immune responses and the production of gamma interferon. Following gene gun bombardments of DNA, both were biased towards type 2 immune responses and the production of interleukin-4. The biases of the T-cell responses towards type 1 or type 2 were stronger for immunizations with IRF-3 as an adjuvant than for immunizations with IRF-7 as an adjuvant. Moderate adjuvant effects for antibody were observed. The isotypes of the antibody responses reflected the method of DNA delivery; intramuscular deliveries of DNA predominantly raised immunoglobulin G2a (IgG2a), whereas gene gun deliveries of DNA predominantly raised IgG1. These biases were enhanced by the codelivered IRFs. Overall, under the conditions of our experiments, IRF-3 had good activity for T cells, IRF-7 had good activity for both antibody and T cells, and IRF-1 had good activity for antibody.  相似文献   

7.
ABSTRACT: BACKGROUND: The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans. METHODS: Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP). RESULTS: Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of a DNA vaccine as compared to immunizations with a considerably lower dose. Biojector delivery followed by EP, however, overcame this observed dose restriction and induced significantly higher cellular and humoral immune responses after immunization with a high dose of DNA. Furthermore, a close correlation between in vivo antigen expression and cell-mediated immune responses was observed. CONCLUSIONS: These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.  相似文献   

8.
In an effort to develop a more effective genetic immunization strategy for HIV, we developed an HIV-2 env DNA vaccine and evaluated three adjuvant formulations. The gp140 gene from HIV-2(UC2 )was synthesized using mammalian codons and cloned into a plasmid vector that expresses eukaryotic genes at high levels. We found that after three immunizations in mice, a novel cationic liposome formulation (Vaxfectin) was superior at inducing systemic and mucosal antibody responses compared to a naked DNA, a controlled release device (an Alzet minipump) and polysaccharide microparticles made from chitosan (P = 0.027). Vaxfectin also induced higher levels of systemic antibodies for each isotype and IgG subclass as well as levels of HIV-2-specific mucosal IgA (P = 0.034). When different routes of immunization were used with the Vaxfectin formulation, gp140-specific systemic antibody responses were highest by the intradermal route, mucosal antibody responses were highest by the intramuscular route, while the intranasal route was the least effective. These results suggest that this cationic liposome formulation is an important adjuvant to improve the effectiveness of genetic immunization strategies for AIDS, and that multiple routes of immunization should be employed for optimal efficacy for HIV vaccine candidates.  相似文献   

9.
Although the initial isolates of the severe acute respiratory syndrome (SARS) coronavirus (CoV) are sensitive to neutralization by antibodies through their spike (S) glycoprotein, variants of S have since been identified that are resistant to such inhibition. Optimal vaccine strategies would therefore make use of additional determinants of immune recognition, either through cellular or expanded, cross-reactive humoral immunity. Here, the cellular and humoral immune responses elicited by different combinations of gene-based and inactivated viral particles with various adjuvants have been assessed. The T-cell response was altered by different prime-boost immunizations, with the optimal CD8 immunity induced by DNA priming and replication-defective adenoviral vector boosting. The humoral immune response was enhanced most effectively through the use of inactivated virus with adjuvants, either MF59 or alum, and was associated with stimulation of the CD4 but not the CD8 response. The use of inactivated SARS virus with MF59 enhanced the CD4 and antibody response even after gene-based vaccination. Because both cellular and humoral immune responses are generated by gene-based vaccination and inactivated viral boosting, this strategy may prove useful in the generation of SARS-CoV vaccines.  相似文献   

10.
Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.  相似文献   

11.
DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV-1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8+ T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.  相似文献   

12.
The sublingual route has been proposed as a needle-free option to induce systemic and mucosal immune protection against viral infections. In a translational study of systemic and mucosal humoral immune responses to sublingual or systemically administered viral antigens, eighteen healthy female volunteers aged 19-31 years received three immunizations with a quadravalent Human Papilloma Virus vaccine at 0, 4 and 16 weeks as sublingual drops (SL, n = 12) or intramuscular injection (IM, n = 6). IM antigen delivery induced or boosted HPV-specific serum IgG and pseudovirus-neutralizing antibodies, HPV-specific cervical and vaginal IgG, and elicited circulating IgG and IgA antibody secreting cells. SL antigens induced ~38-fold lower serum and ~2-fold lower cervical/vaginal IgG than IM delivery, and induced or boosted serum virus neutralizing antibody in only 3/12 subjects. Neither route reproducibly induced HPV-specific mucosal IgA. Alternative delivery systems and adjuvants will be required to enhance and evaluate immune responses following sublingual immunization in humans. TRIAL REGISTRATION: ClinicalTrials.govNCT00949572.  相似文献   

13.
乙型肝炎病毒(hepatitis B virus,HBV)极易形成慢性感染,主要机制在于感染者不能产生强有力的细胞免疫应答以清除病毒[1].慢性HBV感染者体内虽然存在HBV抗原特异性T淋巴细胞,但对HBV抗原的反应性较低.研究发现,增强这类T淋巴细胞的反应性,可以促进HBV的清除[2].  相似文献   

14.
Human papillomavirus is known to be the major pathogen of cervical cancer. Here, we report the efficacy of a bivalent human papillomavirus type 16 and 18 DNA vaccine system following repeated dosing in mice and pigs using a recombinant baculovirus bearing human endogenous retrovirus envelope protein (AcHERV) as a vector. The intramuscular administration of AcHERV-based HPV16L1 and HPV18L1 DNA vaccines induced antigen-specific serum IgG, vaginal IgA, and neutralizing antibodies to levels comparable to those achieved using the commercially marketed vaccine Cervarix. Similar to Cervarix, AcHERV-based bivalent vaccinations completely blocked subsequent vaginal challenge with HPV type-specific pseudovirions. However, AcHERV-based bivalent vaccinations induced significantly higher cell-mediated immune responses than Cervarix, promoting 4.5- (HPV16L1) and 3.9-(HPV18L1) fold higher interferon-γ production in splenocytes upon stimulation with antigen type-specific pseudovirions. Repeated dosing did not affect the immunogenicity of AcHERV DNA vaccines. Three sequential immunizations with AcHERV-HP18L1 DNA vaccine followed by three repeated dosing with AcHERV-HP16L1 over 11 weeks induced an initial production of anti-HPV18L1 antibody followed by subsequent induction of anti-HPV16L1 antibody. Finally, AcHERV-based bivalent DNA vaccination induced antigen-specific serum IgG immune responses in pigs. These results support the further development of AcHERV as a bivalent human papillomavirus DNA vaccine system for use in preventing the viral infection as well as treating the infected women by inducing both humoral and cell-mediated immune responses. Moreover, the possibility of repeated dosing indicates the utility of AcHERV system for reusable vectors of other viral pathogen vaccines.  相似文献   

15.
DNA vaccines offer considerable promise for improvement over conventional vaccines. For the crucial step of delivering DNA vaccines intracellularly, electroporation (EP) has proven to be highly effective. This method has yielded powerful humoral and cellular responses in various species, including nonhuman primates. In an attempt to further improve DNA vaccination we used micron-size gold particles (which do not bind or adsorb DNA) as a particulate adjuvant which was coinjected with DNA intramuscularly into mice, followed by EP of the target site. The presence of gold particles accelerated the antibody response significantly. Maximum titers against hepatitis B surface antigen (HBsAg) were reached after one boost in 6 weeks, whereas 8 weeks were required without particles. These immunizations were effective in protecting mice against tumor challenge with cancer cells expressing HBsAg as a surrogate cancer antigen. Computer modeling of electric fields and gene expression studies indicate that gold particles do not stimulate EP and subsequent antigen expression. The particles may act as an attractant for immune cells, especially antigen presenting cells. We conclude that particulate adjuvants combined with DNA vaccine delivery by EP reduces the immune response time and may increase vaccine efficacy. This method may become valuable for developing prophylactic as well as therapeutic vaccines. The rapid response may be of particular interest in countering bio-terrorism.  相似文献   

16.
We previously showed that intradermal immunization with plasmids expressing the murine cytomegalovirus (MCMV) protein IE1-pp89 or M84 protects against viral challenge and that coimmunization has a synergistic protective effect (C. S. Morello, L. D. Cranmer, and D. H. Spector, J. Virol. 74:3696-3708, 2000). Using an intracellular gamma interferon cytokine staining assay, we have now characterized the CD8+ T-cell response after DNA immunization with pp89, M84, or pp89 plus M84. The pp89- and M84-specific CD8+ T-cell responses peaked rapidly after three immunizations. DNA immunization and MCMV infection generated similar levels of pp89-specific CD8+ T cells. In contrast, a significantly higher level of M84-specific CD8+ T cells was elicited by DNA immunization than by MCMV infection. Fusion of ubiquitin to pp89 enhanced the CD8+ T-cell response only under conditions where vaccination was suboptimal. Three immunizations with either pp89, M84, or pp89 plus M84 DNA also provided significant protection against MCMV infection for at least 6 months, with the best protection produced by coimmunization. A substantial percentage of antigen-specific CD8+ T cells remained detectable, and they responded rapidly to the MCMV challenge. These results underscore the importance of considering antigens that do not appear to be highly immunogenic during infection as DNA vaccine candidates.  相似文献   

17.
Langerhans cells in the epidermis of skin are potent antigen-presenting cells that trigger the immune system to respond to invading microorganisms. We have previously shown that epidermal powder immunization with a powdered inactivated influenza virus vaccine, by targeting the Langerhans cell-rich epidermis, was more efficacious than deeper tissue injection using a needle and syringe. We now report enhanced humoral and cellular immune responses to recombinant hepatitis B surface antigen following epidermal powder immunization. We observed that epidermal powder immunization with unadjuvanted hepatitis B surface antigen elicited an antibody titre equivalent to that induced by the alum-adjuvanted vaccine delivered by intramuscular injection, suggesting that epidermal powder immunization can overcome the need for adjuvantation. We demonstrated that synthetic CpG oligonucleotides (CpG DNA) could be coformulated with hepatitis B surface antigen and delivered by epidermal powder immunization to further augment the antibody response and modulate T helper cell activities. Epidermal powder immunization of hepatitis B surface antigen formulated with CpG DNA formulations resulted in 1.5-2.0 logs higher IgG antibody titres than alum-adjuvanted commercial vaccines administered by intramuscular injection. Formulation of hepatitis B surface antigen with CpG DNA elicited an augmented IgG2a antibody response and increased frequency of IFN-gamma secreting cells. In addition, CpG DNA was found to activate epidermal Langerhans cells and stimulate the production of TNF-alpha and IL-12 cytokines by epidermal cells, explaining its strong adjuvant activity following epidermal powder immunization. These results show that epidermal powder immunization is a safe and effective method to deliver hepatitis B surface antigen and the addition of new adjuvants, such as CpG DNA, may further enhance the efficacy of this vaccine.  相似文献   

18.
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost.  相似文献   

19.
Cancer vaccines, while theoretically attractive, present difficult challenges that must be overcome to be effective. Cancer vaccines are often poorly immunogenic and may require augmentation of immunogenicity through the use of adjuvants and/or immune response modifiers. Toll-like receptor (TLR) ligands are a relatively new class of immune response modifiers that may have great potential in inducing and augmenting both cellular and humoral immunity to vaccines. TLR7 ligands produce strong cellular responses and specific IgG2a and IgG2b antibody responses to protein immunogens. This study shows that a new TLR7 ligand, 3M-019, in combination with liposomes produces very strong immune responses to a pure protein prototype vaccine in mice. Female C57BL/6 mice were immunized subcutaneously with ovalbumin (OVA, 0.1 mg/dose) weekly 4x. Some groups were immunized to OVA plus 3M-019 or to OVA plus 3M-019 encapsulated in liposomes. Both antibody and cellular immune responses against OVA were measured after either two or four immunizations. Anti-OVA IgG antibody responses were significantly increased after two immunizations and were substantially higher after four immunizations in mice immunized with OVA combined with 3M-019. Encapsulation in liposomes further augmented antibody responses. IgM responses, on the other hand, were lowered by 3M-019. OVA-specific IgG2a levels were increased 625-fold by 3M-019 in liposomes compared to OVA alone, while anti-OVA IgG2b levels were over 3,000 times higher. In both cases encapsulation of 3M-019 in liposomes was stronger than either liposomes alone or 3M-019 without liposomes. Cellular immune responses were likewise increased by 3M-019 but further enhanced when it was encapsulated in liposomes. The lack of toxicity also indicates that this combination may by safe, effective method to boost immune response to cancer vaccines.  相似文献   

20.
Immunization with plasmid DNA, a relatively novel technique, is a promising vaccination technique. To improve the immune response by DNA vaccination various methods have been used, such as chemical adjuvants or immunomodulatory molecules formulated into microparticles or liposomes. The aim of this research is to evaluate the immune responses of sheep immunized with DNA plasmids encoding Toxoplasma gondii dense granule antigen GRA7 formulated into three different adjuvant formulations. Sixty sheep were injected intramuscularly with the DNA plasmids. Twelve received the liposome-formulated plasmid pVAXIgGRA7, 12 Emulsigen P formulated plasmid pVAXIgGRA7 and 12 Emulsigen D formulated plasmid pVAXIgGRA7. Twelve animals were used as a control and received the vector alone. All the animals were inoculated at week 0, and week 4. Immunization of the sheep with plasmids encoding GRA7, with the different adjuvant formulations, effectively primed the immune response. After the first inoculation, moderate to high antibody responses were observed with the three different adjuvant formulations. A significantly elevated specific IgG2 response was observed in the sheep immunized with liposomes and Emulsigen D as adjuvants. In the group immunized with Emulsigen P as an adjuvant, lower IgG1 and IgG2 antibody levels were developed compared to the other treatment groups. In all the immunized groups, DNA immunization stimulated a IFN-γ response. No antibody or IFN-γ responses were detected in the control group immunized with an empty plasmid or not immunized. These results indicate that intramuscular immunization of sheep with a DNA vaccine with the adjuvants liposomes and Emulsigen D induce a significant immune response against T. gondii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号