首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Predicting active site residue annotations in the Pfam database   总被引:1,自引:0,他引:1  

Background

The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.

Results

This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.

Conclusion

Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.  相似文献   

2.
Ou-Yang  Le  Yan  Hong  Zhang  Xiao-Fei 《BMC bioinformatics》2017,18(13):463-34

Background

The accurate identification of protein complexes is important for the understanding of cellular organization. Up to now, computational methods for protein complex detection are mostly focus on mining clusters from protein-protein interaction (PPI) networks. However, PPI data collected by high-throughput experimental techniques are known to be quite noisy. It is hard to achieve reliable prediction results by simply applying computational methods on PPI data. Behind protein interactions, there are protein domains that interact with each other. Therefore, based on domain-protein associations, the joint analysis of PPIs and domain-domain interactions (DDI) has the potential to obtain better performance in protein complex detection. As traditional computational methods are designed to detect protein complexes from a single PPI network, it is necessary to design a new algorithm that could effectively utilize the information inherent in multiple heterogeneous networks.

Results

In this paper, we introduce a novel multi-network clustering algorithm to detect protein complexes from multiple heterogeneous networks. Unlike existing protein complex identification algorithms that focus on the analysis of a single PPI network, our model can jointly exploit the information inherent in PPI and DDI data to achieve more reliable prediction results. Extensive experiment results on real-world data sets demonstrate that our method can predict protein complexes more accurately than other state-of-the-art protein complex identification algorithms.

Conclusions

In this work, we demonstrate that the joint analysis of PPI network and DDI network can help to improve the accuracy of protein complex detection.
  相似文献   

3.

Background

Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI) networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins.

Results

DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms.

Conclusion

We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed using the DomainGA scores are reasonably low, and the erroneous predictions can be filtered further using supplementary approaches such as those based on literature search or other prediction methods.  相似文献   

4.

Background

Identification of protein interaction networks has received considerable attention in the post-genomic era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour intensive. Consequently there is a growing need for the development of computational tools that are capable of effectively identifying such interactions.

Results

Here we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces cerevisiae proteins from their primary structure and without the need for any additional information or predictions about the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30) and YMR135C (gid8) yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c). The observed interaction was confirmed by tandem affinity purification (TAP tag), verifying the ability of PIPE to predict novel protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any) on the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us to predict protein interactions that are not included in genome-wide yeast TAP tagging projects.

Conclusion

PIPE analysis can predict yeast protein-protein interactions. Also, PIPE analysis can be used to study the internal architecture of yeast protein complexes. The data also suggests that a finite set of short polypeptide signals seem to be responsible for the majority of the yeast protein-protein interactions.  相似文献   

5.

Background

Currently a huge amount of protein-protein interaction data is available therefore extracting meaningful ones are a challenging task. In a protein-protein interaction network, hubs are considered as key proteins maintaining function and stability of the network. Therefore, studying protein-protein complexes from a structural perspective provides valuable information for predicted interactions.

Results

In this study, we have predicted by comparative modelling and docking methods protein-protein complexes of hubs of human NR-RTK network inferred from our earlier study. We found that some interactions are mutually excluded while others could occur simultaneously. This study revealed by structural analysis the key role played by Estrogen receptor (ESR1) in mediating the signal transduction between human Receptor Tyrosine kinases (RTKs) and nuclear receptors (NRs).

Conclusions

Although the methods require human intervention and judgment, they can identify the interactions that could occur together or ones that are mutually exclusive. This adds a fourth dimension to interaction network, that of time, and can assist in obtaining concrete predictions consistent with experiments.

Open peer review

This article was reviewed by Dr. Anthony Almudevar, Prof. James Faeder and Prof. Eugene Koonin. For the full reviews, please go to the Reviewers' comments.  相似文献   

6.
Evolutionary conservation of domain-domain interactions   总被引:3,自引:1,他引:2  

Background

Recently, there has been much interest in relating domain-domain interactions (DDIs) to protein-protein interactions (PPIs) and vice versa, in an attempt to understand the molecular basis of PPIs.

Results

Here we map structurally derived DDIs onto the cellular PPI networks of different organisms and demonstrate that there is a catalog of domain pairs that is used to mediate various interactions in the cell. We show that these DDIs occur frequently in protein complexes and that homotypic interactions (of a domain with itself) are abundant. A comparison of the repertoires of DDIs in the networks of Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens shows that many DDIs are evolutionarily conserved.

Conclusion

Our results indicate that different organisms use the same 'building blocks' for PPIs, suggesting that the functionality of many domain pairs in mediating protein interactions is maintained in evolution.  相似文献   

7.

Background

Protein complexes play an important role in biological processes. Recent developments in experiments have resulted in the publication of many high-quality, large-scale protein-protein interaction (PPI) datasets, which provide abundant data for computational approaches to the prediction of protein complexes. However, the precision of protein complex prediction still needs to be improved due to the incompletion and noise in PPI networks.

Results

There exist complex and diverse relationships among proteins after integrating multiple sources of biological information. Considering that the influences of different types of interactions are not the same weight for protein complex prediction, we construct a multi-relationship protein interaction network (MPIN) by integrating PPI network topology with gene ontology annotation information. Then, we design a novel algorithm named MINE (identifying protein complexes based on Multi-relationship protein Interaction NEtwork) to predict protein complexes with high cohesion and low coupling from MPIN.

Conclusions

The experiments on yeast data show that MINE outperforms the current methods in terms of both accuracy and statistical significance.
  相似文献   

8.

Background

Currently a huge amount of protein-protein interaction data is available from high throughput experimental methods. In a large network of protein-protein interactions, groups of proteins can be identified as functional clusters having related functions where a single protein can occur in multiple clusters. However experimental methods are error-prone and thus the interactions in a functional cluster may include false positives or there may be unreported interactions. Therefore correctly identifying a functional cluster of proteins requires the knowledge of whether any two proteins in a cluster interact, whether an interaction can exclude other interactions, or how strong the affinity between two interacting proteins is.

Methods

In the present work the yeast protein-protein interaction network is clustered using a spectral clustering method proposed by us in 2006 and the individual clusters are investigated for functional relationships among the member proteins. 3D structural models of the proteins in one cluster have been built – the protein structures are retrieved from the Protein Data Bank or predicted using a comparative modeling approach. A rigid body protein docking method (Cluspro) is used to predict the protein-protein interaction complexes. Binding sites of the docked complexes are characterized by their buried surface areas in the docked complexes, as a measure of the strength of an interaction.

Results

The clustering method yields functionally coherent clusters. Some of the interactions in a cluster exclude other interactions because of shared binding sites. New interactions among the interacting proteins are uncovered, and thus higher order protein complexes in the cluster are proposed. Also the relative stability of each of the protein complexes in the cluster is reported.

Conclusions

Although the methods used are computationally expensive and require human intervention and judgment, they can identify the interactions that could occur together or ones that are mutually exclusive. In addition indirect interactions through another intermediate protein can be identified. These theoretical predictions might be useful for crystallographers to select targets for the X-ray crystallographic determination of protein complexes.
  相似文献   

9.
10.

Background

Many common diseases arise from an interaction between environmental and genetic factors. Our knowledge regarding environment and gene interactions is growing, but frameworks to build an association between gene-environment interactions and disease using preexisting, publicly available data has been lacking. Integrating freely-available environment-gene interaction and disease phenotype data would allow hypothesis generation for potential environmental associations to disease.

Methods

We integrated publicly available disease-specific gene expression microarray data and curated chemical-gene interaction data to systematically predict environmental chemicals associated with disease. We derived chemical-gene signatures for 1,338 chemical/environmental chemicals from the Comparative Toxicogenomics Database (CTD). We associated these chemical-gene signatures with differentially expressed genes from datasets found in the Gene Expression Omnibus (GEO) through an enrichment test.

Results

We were able to verify our analytic method by accurately identifying chemicals applied to samples and cell lines. Furthermore, we were able to predict known and novel environmental associations with prostate, lung, and breast cancers, such as estradiol and bisphenol A.

Conclusions

We have developed a scalable and statistical method to identify possible environmental associations with disease using publicly available data and have validated some of the associations in the literature.  相似文献   

11.

Background

The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN). It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency.

Results

Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems.

Conclusion

Our results reveal topological equivalences between the protein interaction network and the metabolic pathway network. Evolved protein interactions may contribute significantly towards increasing the efficiency of metabolic processes by permitting higher metabolic fluxes. Thus, our results shed further light on the unifying principles shaping the evolution of both the functional (metabolic) as well as the physical interaction network.  相似文献   

12.

Background

Protein-protein interactions play a critical role in protein function. Completion of many genomes is being followed rapidly by major efforts to identify interacting protein pairs experimentally in order to decipher the networks of interacting, coordinated-in-action proteins. Identification of protein-protein interaction sites and detection of specific amino acids that contribute to the specificity and the strength of protein interactions is an important problem with broad applications ranging from rational drug design to the analysis of metabolic and signal transduction networks.

Results

In order to increase the power of predictive methods for protein-protein interaction sites, we have developed a consensus methodology for combining four different methods. These approaches include: data mining using Support Vector Machines, threading through protein structures, prediction of conserved residues on the protein surface by analysis of phylogenetic trees, and the Conservatism of Conservatism method of Mirny and Shakhnovich. Results obtained on a dataset of hydrolase-inhibitor complexes demonstrate that the combination of all four methods yield improved predictions over the individual methods.

Conclusions

We developed a consensus method for predicting protein-protein interface residues by combining sequence and structure-based methods. The success of our consensus approach suggests that similar methodologies can be developed to improve prediction accuracies for other bioinformatic problems.  相似文献   

13.

Background

Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate.

Results

We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific HomPPI), which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC) of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of both the query and the target can be reliably identified. The HomPPI web server is available at http://homppi.cs.iastate.edu/.

Conclusions

Sequence homology-based methods offer a class of computationally efficient and reliable approaches for predicting the protein-protein interface residues that participate in either obligate or transient interactions. For query proteins involved in transient interactions, the reliability of interface residue prediction can be improved by exploiting knowledge of putative interaction partners.  相似文献   

14.

Background

Protein complexes are important entities to organize various biological processes in the cell, like signal transduction, gene expression, and molecular transmission. In most cases, proteins perform their intrinsic tasks in association with their specific interacting partners, forming protein complexes. Therefore, an enriched catalog of protein complexes in a cell could accelerate further research to elucidate the mechanisms underlying many biological processes. However, known complexes are still limited. Thus, it is a challenging problem to computationally predict protein complexes from protein-protein interaction networks, and other genome-wide data sets.

Methods

Macropol et al. proposed a protein complex prediction algorithm, called RRW, which repeatedly expands a current cluster of proteins according to the stationary vector of a random walk with restarts with the cluster whose proteins are equally weighted. In the cluster expansion, all the proteins within the cluster have equal influences on determination of newly added protein to the cluster. In this paper, we extend the RRW algorithm by introducing a random walk with restarts with a cluster of proteins, each of which is weighted by the sum of the strengths of supporting evidence for the direct physical interactions involving the protein. The resulting algorithm is called NWE (Node-Weighted Expansion of clusters of proteins). Those interaction data are obtained from the WI-PHI database.

Results

We have validated the biological significance of the results using curated complexes in the CYC2008 database, and compared our method to RRW and MCL (Markov Clustering), a popular clustering-based method, and found that our algorithm outperforms the other algorithms.

Conclusions

It turned out that it is an effective approach in protein complex prediction to expand a cluster of proteins, each of which is weighted by the sum of the strengths of supporting evidence for the direct physical interactions involving the protein.
  相似文献   

15.

Background

Cellular interaction networks can be used to analyze the effects on cell signaling and other functional consequences of perturbations to cellular physiology. Thus, several methods have been used to reconstitute interaction networks from multiple published datasets. However, the structure and performance of these networks depends on both the quality and the unbiased nature of the original data. Due to the inherent bias against membrane proteins in protein-protein interaction (PPI) data, interaction networks can be compromised particularly if they are to be used in conjunction with drug screening efforts, since most drug-targets are membrane proteins.

Results

To overcome the experimental bias against PPIs involving membrane-associated proteins we used a probabilistic approach based on a hypergeometric distribution followed by logistic regression to simultaneously optimize the weights of different sources of interaction data. The resulting less biased genome-scale network constructed for the budding yeast Saccharomyces cerevisiae revealed that the starvation pathway is a distinct subnetwork of autophagy and retrieved a more integrated network of unfolded protein response genes. We also observed that the centrality-lethality rule depends on the content of membrane proteins in networks.

Conclusions

We show here that the bias against membrane proteins can and should be corrected in order to have a better representation of the interactions and topological properties of protein interaction networks.  相似文献   

16.
17.
Kim Y  Min B  Yi GS 《Proteome science》2012,10(Z1):S9

Background

Deciphering protein-protein interaction (PPI) in domain level enriches valuable information about binding mechanism and functional role of interacting proteins. The 3D structures of complex proteins are reliable source of domain-domain interaction (DDI) but the number of proven structures is very limited. Several resources for the computationally predicted DDI have been generated but they are scattered in various places and their prediction show erratic performances. A well-organized PPI and DDI analysis system integrating these data with fair scoring system is necessary.

Method

We integrated three structure-based DDI datasets and twenty computationally predicted DDI datasets and constructed an interaction analysis system, named IDDI, which enables to browse protein and domain interactions with their relationships. To integrate heterogeneous DDI information, a novel scoring scheme is introduced to determine the reliability of DDI by considering the prediction scores of each DDI and the confidence levels of each prediction method in the datasets, and independencies between predicted datasets. In addition, we connected this DDI information to the comprehensive PPI information and developed a unified interface for the interaction analysis exploring interaction networks at both protein and domain level.

Result

IDDI provides 204,705 DDIs among total 7,351 Pfam domains in the current version. The result presents that total number of DDIs is increased eight times more than that of previous studies. Due to the increment of data, 50.4% of PPIs could be correlated with DDIs which is more than twice of previous resources. Newly designed scoring scheme outperformed the previous system in its accuracy too. User interface of IDDI system provides interactive investigation of proteins and domains in interactions with interconnected way. A specific example is presented to show the efficiency of the systems to acquire the comprehensive information of target protein with PPI and DDI relationships. IDDI is freely available at http://pcode.kaist.ac.kr/iddi/.
  相似文献   

18.
19.

Background

Drugs can influence the whole biological system by targeting interaction reactions. The existence of interactions between drugs and network reactions suggests a potential way to discover targets. The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of drug-targets in current datasets are validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. Currently, network pharmacology has used in identifying potential drug targets to predicting the spread of drug activity and greatly contributed toward the analysis of biological systems on a much larger scale than ever before.

Methods

In this article, we present a computational method to predict targets for rhein by exploring drug-reaction interactions. We have implemented a computational platform that integrates pathway, protein-protein interaction, differentially expressed genome and literature mining data to result in comprehensive networks for drug-target interaction. We used Cytoscape software for prediction rhein-target interactions, to facilitate the drug discovery pipeline.

Results

Results showed that 3 differentially expressed genes confirmed by Cytoscape as the central nodes of the complicated interaction network (99 nodes, 153 edges). Of note, we further observed that the identified targets were found to encompass a variety of biological processes related to immunity, cellular apoptosis, transport, signal transduction, cell growth and proliferation and metabolism.

Conclusions

Our findings demonstrate that network pharmacology can not only speed the wide identification of drug targets but also find new applications for the existing drugs. It also implies the significant contribution of network pharmacology to predict drug targets.  相似文献   

20.

Background

Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms.

Methods

We have developed novel semantic similarity method, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes.

Results

The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号