首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rho kinase (ROCK) inhibitor is a promising agent for neural injury disorders, which mechanism is associated with neurite outgrowth. However, neurite outgrowth resistance occurred when PC12 Adh cell was treated with ROCK inhibitors for a longer time. PC12 Adh cells were treated with ROCK inhibitor Y27632 or NGF for different durations. Neurite outgrowth resistance occurred when PC12 Adh cell exposed to Y27632 (33 µM) for 3 or more days, but not happen when exposed to nerve growth factor (NGF, 100 ng/mL). The gene expression in the PC12 Adh cells treated with Y27632 (33 µM) or NGF (100 ng/mL) for 2 or 4 days was assayed by gene microarray, and the reliability of the results were confirmed by real‐time RT‐PCR. Cluster analysis proved that the gene expression profile of PC12 Adh cell treated with Y27632 for 4 days was different from that treated with Y27632 for 2 days and those treated with NGF for 2 and 4 days, respectively. Pathway analysis hinted that the neurite outgrowth resistance could be associated with up‐regulation of inflammatory pathways, especially rno04610 (complement and coagulation cascades), and down‐regulation of cell cycle pathways, especially rno04110.  相似文献   

2.
Neurite extension and retraction are very important processes in the formation of neuronal networks. A strategy for fostering axonal regrowth/regeneration of injured adult neurons is attractive therapeutically for various diseases such as traumatic brain injury, stroke and Alzheimer's disease. The Rho family of small GTPases, including Rac and Cdc42 have been shown to be involved in promoting neurite outgrowth. On the other hand, activation of RhoA induces collapse of growth cone and retraction of neurites. Rho‐associated kinase (ROCK) an effector molecule of RhoA, is downstream of a number of axonal outgrowth and growth cone collapse inhibition mechanisms. In the present study, we sought to identify the role of ROCK in neurite outgrowth in PC12 cells. Y27632, a specific inhibitor of ROCK, induced a robust increase in neurite outgrowth in these cells within 24–48 h as visualized by phase contrast microscopy. Staining with FITC‐tubulin or phalloidin show extended neurites in PC12 cells treated with Y27632, comparable to that with 100 ng/mL of NGF. Assessment of other biochemical markers of neurite outgrowth such as GAP43, neurofilament and tyrosine hydroxylase phosphorylation further indicates that inhibition of ROCK in PC12 cells causes differentiation of these cells to a neuronal phenotype.  相似文献   

3.
Cyclic phosphatidic acid (cPA; 1-acyl-sn-glycerol-2,3-cyclic phosphate) is an analog of the growth factor-like phospholipid mediator lysophosphatidic acid (LPA). As brain tissue is the richest source of cPA we tested its effects on hippocampal neurons from day 16/17 embryonic rat cultured in a serum-free medium. Nanomolar concentrations of cPA elicited a neurotrophic effect and promoted neurite outgrowth that exceeded that of 50 ng/mL nerve growth factor (NGF). Pertussis toxin, the LPA1/LPA3 receptor-selective antagonist dioctylglycerol pyrophosphate, the myristoylated inhibitory pseudosubstrate peptide of protein kinase A (PKI), Wortmannin and PD98059 abolished the neurite-promoting effect. cPA elicited a sustained activation of extracellular signal-related kinases (ERK) 1/2 and Akt. Clostridium difficile toxin B, an inhibitor of the Rho family of GTPases, reduced cPA-induced enhancement of neurite outgrowth. In B5P cells, a clonal cell line of PC12 cells overexpressing tyrosine kinase NGF receptor (TrkA), cPA elicited transphosphorylation of TrkA. cPA-elicited ERK activation was blocked by K252a and PKI. These results suggest that cPA mimics the effects of, and activates signaling pathways similar to, the neurotrophin NGF in cultured embryonic hippocampal neurons and B5P cells.  相似文献   

4.
Phospholipase Cδ3 (PLCδ3) is a key enzyme regulating phosphoinositide metabolism; however, its physiological function remains unknown. Because PLCδ3 is highly enriched in the cerebellum and cerebral cortex, we examined the role of PLCδ3 in neuronal migration and outgrowth. PLCδ3 knockdown (KD) inhibits neurite formation of cerebellar granule cells, and application of PLCδ3KD using in utero electroporation in the developing brain results in the retardation of the radial migration of neurons in the cerebral cortex. In addition, PLCδ3KD inhibits axon and dendrite outgrowth in primary cortical neurons. PLCδ3KD also suppresses neurite formation of Neuro2a neuroblastoma cells induced by serum withdrawal or treatment with retinoic acid. This inhibition is released by the reintroduction of wild-type PLCδ3. Interestingly, the H393A mutant lacking phosphatidylinositol 4,5-bisphosphate hydrolyzing activity generates supernumerary protrusions, and a constitutively active mutant promotes extensive neurite outgrowth, indicating that PLC activity is important for normal neurite outgrowth. The introduction of dominant negative RhoA (RhoA-DN) or treatment with Y-27632, a Rho kinase-specific inhibitor, rescues the neurite extension in PLCδ3KD Neuro2a cells. Similar effects were also detected in primary cortical neurons. Furthermore, the RhoA expression level was significantly decreased by serum withdrawal or retinoic acid in control cells, although this decrease was not observed in PLCδ3KD cells. We also found that exogenous expression of PLCδ3 down-regulated RhoA protein, and constitutively active PLCδ3 promotes the RhoA down-regulation more significantly than PLCδ3 upon differentiation. These results indicate that PLCδ3 negatively regulates RhoA expression, inhibits RhoA/Rho kinase signaling, and thereby promotes neurite extension.  相似文献   

5.
Although the RhoA/Rho kinase (RhoA/ROK) pathway has been extensively investigated, its roles and downstream signaling pathways are still not well understood in myogenic processes. Therefore, we examined the effects of RhoA/ROK on myogenic processes and their signaling molecules using H9c2 and C2C12 cells. Increases in RhoA/ROK activities and serine phosphorylation levels of insulin receptor substrate (IRS)-1 (Ser307 and Ser636/639) and IRS-2 were found in proliferating myoblasts, whereas IRS-1/2 tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity increased during the differentiation process. ROK strongly bound to IRS-1/2 in proliferation medium but dissociated from them in differentiation medium (DM). ROK inactivation by a ROK inhibitor, Y27632, or a dominant-negative ROK, decreased IRS-1/2 serine phosphorylation with increases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity, which led to muscle differentiation even in proliferation medium. Inhibition of ROK also enhanced differentiation in DM. ROK activation by a constitutive active ROK blocked muscle differentiation with the increased IRS-1/2 serine phosphorylation, followed by decreases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity in DM. Interestingly, fibroblast growth factor-2 added to DM also blocked muscle differentiation through RhoA/ROK activation. Fibroblast growth factor-2 blockage of muscle differentiation was reversed by Y27632. Collectively, these results suggest that the RhoA/ROK pathway blocks muscle differentiation by phosphorylating IRS proteins at serine residues, resulting in the decreased IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity. The absence of the inhibitory effects of RhoA/ROK in DM due to low concentrations of myogenic inhibitory growth factors seems to allow IRS-1/2 tyrosine phosphorylation, which stimulates muscle differentiation via transducing normal myogenic signaling.  相似文献   

6.
The purpose of this study was to examine the role of phospholipase D1 (PLD1) in basic fibroblast growth factor (bFGF)-induced neurotrophin-3 (NT-3) expression and neurite outgrowth in H19-7 rat hippocampal neuronal progenitor cells. Overexpression of PLD1 increased bFGF-induced NT-3 expression, and dominant-negative-PLD1 or PLD1 siRNA abolished bFGF-induced NT-3 expression and neurite outgrowth. Treatment with bFGF activated the RhoA/Rho-associated kinase (ROCK)/c-jun N-terminal kinase (JNK) pathway, and bFGF-induced NT-3 expression was blocked by a dominant-negative RhoA as well as by a specific Rho-kinase inhibitor (Y27632) and a SAPK/JNK inhibitor (SP600125). Furthermore, bFGF-induced JNK activation was also blocked by Y27632. These results indicate that the RhoA/ROCK/JNK pathway acts as an upstream signaling pathway in bFGF-induced NT-3 expression. Also, phosphatidic acid, the product of PLD, increased NT-3 expression. We found that PLD regulated the RhoA/ROCK/JNK pathway, which then led to Elk-1 transactivation. When Elk-1 activity was blocked by Elk-1 siRNA, bFGF-induced NT-3 expression and neurite outgrowth decreased. NT-3 overexpression increased neurite outgrowth, indicating that NT-3 is important for neurite outgrowth. Taken together, these results suggest that PLD1 is an important regulator of bFGF-induced NT-3 expression and neurite outgrowth, which are mediated by the RhoA/ROCK/JNK pathway via Elk-1 in H19-7 cells.  相似文献   

7.
Axonal injury in the adult human central nervous system often results in loss of sensation and motor functions. Promoting regeneration of severed axons requires the inactivation of growth inhibitory influences from the tissue environment and stimulation of the neuron intrinsic growth potential. Especially glial cell derived factors, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, and myelin in general, prevent axon regeneration. Most of the glial growth inhibiting factors converge onto the Rho/ROCK signaling pathway in neurons. Although conditions in the injured nervous system are clearly different from those during neurite outgrowth in vitro, here we use a chemical approach to manipulate Rho/ROCK signalling with small-molecule agents to encourage neurite outgrowth in cell culture. The development of therapeutic treatments requires drug testing not only on neurons of experimental animals, but also on human neurons. Using human NT2 model neurons, we demonstrate that the pain reliever Ibuprofen decreases RhoA (Ras homolog gene family, member A GTPase) activation and promotes neurite growth. Inhibition of the downstream effector Rho kinase by the drug Y-27632 results in a strong increase in neurite outgrowth. Conversely, activation of the Rho pathway by lysophosphatidic acid results in growth cone collapse and eventually to neurite retraction. Finally, we show that blocking of Rho kinase, but not RhoA results in an increase in neurons bearing neurites. Due to its anti-inflammatory and neurite growth promoting action, the use of a pharmacological treatment of damaged neural tissue with Ibuprofen should be explored.  相似文献   

8.
The Rho family of small GTPases has been implicated in the reorganization of actin cytoskeleton and subsequent morphological changes in various cells. Rnd2 is a member of the Rnd subfamily, comprising Rnd1, Rnd2, and Rnd3. In contrast to Rnd1 and Rnd3, displaying an antagonistic action for RhoA signaling, signaling pathways of Rnd2 are not well known. Here we have performed a yeast two-hybrid screen using Rnd2 as bait and identified a novel Rnd2 effector protein, predominantly expressed in neurons, including cortical and hippocampal neurons. We named it Pragmin (pragma of Rnd2). In in vivo and in vitro binding assays, Pragmin specifically binds to Rnd2 among the Rho family GTPases in a GTP-dependent manner. Rnd2-bound Pragmin significantly stimulates RhoA activity and induces cell contraction through RhoA and the Rho-kinase pathway in HeLa cells. In PC12 cells, expressing Pragmin inhibits nerve growth factor-induced neurite outgrowth in response to Rnd2, and knock-down of Pragmin by Pragmin-specific small interfering RNA enhances neurite elongation. Therefore, Rnd2 regulates neurite outgrowth by functioning as the RhoA activator through Pragmin, in contrast to Rnd1 and Rnd3 inhibiting RhoA signaling.  相似文献   

9.
During embryonic development, tangentially migrating precerebellar neurons emit a leading process and then translocate their nuclei inside it (nucleokinesis). Netrin 1 (also known as netrin-1) acts as a chemoattractant factor for neurophilic migration of precerebellar neurons (PCN) both in vivo and in vitro. In the present work, we analyzed Rho GTPases that could direct axon outgrowth and/or nuclear migration. We show that the expression pattern of Rho GTPases in developing PCN is consistent with their involvement in the migration of PCN from the rhombic lips. We report that pharmacological inhibition of Rho enhances axon outgrowth of PCN and prevents nuclei migration toward a netrin 1 source, whereas inhibition of Rac and Cdc42 sub-families impair neurite outgrowth of PCN without affecting migration. We show, through pharmacological inhibition, that Rho signaling directs neurophilic migration through Rock activation. Altogether, our results indicate that Rho/Rock acts on signaling pathways favoring nuclear translocation during tangential migration of PCN. Thus, axon extension and nuclear migration of PCN in response to netrin 1 are not strictly dependent processes because: (1) distinct small GTPases are involved; (2) axon extension can occur when migration is blocked; and (3) migration can occur when axon outgrowth is impaired.  相似文献   

10.
The chemotropic guidance cue netrin-1 mediates attraction of migrating axons during central nervous system development through the receptor Deleted in Colorectal Cancer (DCC). Downstream of netrin-1, activated Rho GTPases Rac1 and Cdc42 induce cytoskeletal rearrangements within the growth cone. The Rho guanine nucleotide exchange factor (GEF) Trio is essential for Rac1 activation downstream of netrin-1/DCC, but the molecular mechanisms governing Trio activity remain elusive. Here, we demonstrate that Trio is phosphorylated by Src family kinases in the embryonic rat cortex in response to netrin-1. In vitro, Trio was predominantly phosphorylated at Tyr2622 by the Src kinase Fyn. Though the phospho-null mutant TrioY2622F retained GEF activity toward Rac1, its expression impaired netrin-1-induced Rac1 activation and DCC-mediated neurite outgrowth in N1E-115 neuroblastoma cells. TrioY2622F impaired netrin-1-induced axonal extension in cultured cortical neurons and was unable to colocalize with DCC in growth cones, in contrast to wild-type Trio. Furthermore, depletion of Trio in cortical neurons reduced the level of cell surface DCC in growth cones, which could be restored by expression of wild-type Trio but not TrioY2622F. Together, these findings demonstrate that TrioY2622 phosphorylation is essential for the regulation of the DCC/Trio signaling complex in cortical neurons during netrin-1-mediated axon outgrowth.  相似文献   

11.
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth.  相似文献   

12.
The acquisition of neuronal type-specific morphogenesis is a central feature of neuronal differentiation and has important consequences for region-specific nervous system functions. Here, we report that the cell type-specific cholesterol profile determines the differential modulation of axon and dendrite outgrowths in hippocampal and cerebral cortical neurons in culture. The extent of axon and dendrite outgrowths is greater and the polarity formation occurs earlier in cortical neurons than in hippocampal neurons. The cholesterol concentrations in total homogenate and the lipid rafts from hippocampal neurons are significantly higher than those from cortical neurons. Cholesterol depletion by beta-cyclodextrin markedly enhanced the neurite outgrowth and accelerated the establishment of neuronal polarity in hippocampal neurons, which were similarly observed in nontreated cortical neurons, whereas cholesterol loading had no effects. In contrast, both depletion and loading of cholesterol decreased the neurite outgrowths in cortical neurons. The stimulation of neurite outgrowth and polarity formation induced by cholesterol depletion was accompanied by an enhanced localization of Fyn, a Src kinase, in the lipid rafts of hippocampal neurons. A concomitant treatment with beta-cyclodextrin and a Src family kinase inhibitor, PP2, specifically blocked axon outgrowth but not dendrite outgrowth (both of which were enhanced by beta-cyclodextrin) in hippocampal neurons, suggesting that axon outgrowth modulated by cholesterol is induced in a Fyn-dependent manner. These results suggest that cellular cholesterol modulates axon and dendrite outgrowths and neuronal polarization under culture conditions and also that the difference in cholesterol profile between hippocampal and cortical neurons underlies the difference in neurite outgrowth between these two types of neurons.  相似文献   

13.
Suppressor of cytokine signaling (SOCS) 2 is a negative regulator of growth hormone (GH) signaling that regulates body growth postnatally and neuronal differentiation during development. SOCS2 binds to the GH receptor and inhibits GH signaling, including attenuation of STAT5 activation. Here we describe a new function and mechanism of action for SOCS2. Overexpression of SOCS2 in central nervous system neurons promoted neurite outgrowth, and in PC12 cells, neurite outgrowth was induced under nondifferentiating conditions, leading to inhibition of the neurite-inhibitory GTPase Rho and activation of the neurite-promoting GTPase Rac1. Addition of the epidermal growth factor receptor (EGFR) inhibitors PP3 or AG490 or the Src kinase inhibitor PP2 blocked the SOCS2-induced neurite outgrowth. The overexpressed SOCS2 bound to the EGFR, which was constitutively phosphorylated at Tyr845, the Src binding site. Overexpression of the phosphatase SHP-2 reduced the constitutive EGFR phosphorylation and subsequent neurite outgrowth. SOCS2 expression also resulted in a modest 30% decrease in phosphorylation of STAT5b at Tyr699, which is the primary site on STAT5 phosphorylated by GH; however, total tyrosine phosphorylation of STAT5 was decreased by 75-80% under basal and epidermal growth factor-stimulated conditions. Our findings suggest that SOCS2 regulates EGFR phosphorylation, leading to regulation of neurite outgrowth through a novel pathway that is distinct from GH.  相似文献   

14.

Background

RhoA and Rho kinase inhibitors overcome the inhibition of axonal regeneration posed by central nervous system (CNS) substrates.

Methods

To investigate if inhibition of the Rho pathway augments the neurite extension that naturally occurs in the peripheral nervous system (PNS) following nerve damage, dorsal root ganglion neurons and Schwann cell co-cultures were incubated with culture medium, C3 fusion toxin, and the Rho kinase (ROCK) inhibitors Y27632 and H1152. The longest neurite per neuron were measured and compared. Incubation with Y27632 and H1152 resulted in significantly longer neurites than controls when the neurons were in contact with Schwann cells. When separated by a porous P.E.T. membrane, only the group incubated with H1152 developed significantly longer neurites. This work demonstrates that Rho kinase inhibition augments neurite elongation in the presence of contact with a PNS-like substrate.  相似文献   

15.
Many key cellular functions, such as cell motility and cellular differentiation are mediated by Rho-associated protein kinases (ROCKs). Numerous studies have been conducted to examine the ROCK signal transduction pathways involved in these motile and contractile events with the aid of pharmacological inhibitors such as Y-27632. However the molecular mechanism of action of Y-27632 has not been fully defined. To assess the relative contribution of these Rho effectors to the effects of Y-27632, we compared the cytoskeletal phenotype, wound healing and neurite outgrowth in cells treated with Y-27632 or subjected to knockdown with ROCK-I, ROCK-II or PRK-2- specific siRNAs. Reduction of ROCK-I enhances the formation of thin actin-rich membrane extensions, a phenotype that closely resembles the effect of Y-27632. Knockdown of ROCK II or PRK-2, leads to the formation of disc-like extensions and thick actin bundles, respectively. The effect of ROCK-I knockdown also mimicked the effect of Y-27632 on wound closer rates. ROCK-I knockdown and Y-27632 enhanced wound closure rates, while ROCK-II and PRK-2 were not appreciably different from control cells. In neurite outgrowth assays, knockdown of ROCK-I, ROCK-II or PRK-2 enhances neurite lengths, however no individual knockdown stimulated neurite outgrowth as robustly as Y-27632. We conclude that several kinases contribute to the global effect of Y-27632 on cellular responses.  相似文献   

16.
Neuritic extension is the resultant of two vectorial processes: outgrowth and retraction. Whereas myosin IIB is required for neurite outgrowth, retraction is driven by a motor whose identity has remained unknown until now. Preformed neurites in mouse Neuro-2A neuroblastoma cells undergo immediate retraction when exposed to isoform-specific antisense oligonucleotides that suppress myosin IIB expression, ruling out myosin IIB as the retraction motor. When cells were preincubated with antisense oligonucleotides targeting myosin IIA, simultaneous or subsequent addition of myosin IIB antisense oligonucleotides did not elicit neurite retraction, both outgrowth and retraction being curtailed. Even during simultaneous application of antisense oligonucleotides against both myosin isoforms, lamellipodial spreading continued despite the complete inhibition of neurite extension, indicating an uncoupling of lamellipodial dynamics from movement of the neurite. Significantly, lysophosphatidate- or thrombin-induced neurite retraction was blocked not only by the Rho-kinase inhibitor Y27632 but also by antisense oligonucleotides targeting myosin IIA. Control oligonucleotides or antisense oligonucleotides targeting myosin IIB had no effect. In contrast, Y27632 did not inhibit outgrowth, a myosin IIB-dependent process. We conclude that the conventional myosin motor, myosin IIA, drives neurite retraction.  相似文献   

17.
Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.  相似文献   

18.
《Cytotherapy》2014,16(10):1371-1383
Background aimsThe purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo.MethodsCultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media.ResultsIsolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects.ConclusionsL-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism.  相似文献   

19.
20.
Li P  Matsunaga K  Yamakuni T  Ohizumi Y 《Life sciences》2002,71(15):1821-1835
Picrosides I and II caused a concentration-dependent (> 0.1 microM) enhancement of basic fibroblast growth factor (bFGF, 2 ng/ml)-, staurosporine (10 nM)- and dibutyryl cyclic AMP (dbcAMP, 0.3 mM)-induced neurite outgrowth from PC12D cells. PD98059 (20 microM), a potent mitogen-activated protein (MAP) kinase kinase inhibitor, blocked the enhancement of bFGF (2 ng/ml)-, staurosporine (10 nM)- or dbcAMP (0.3 mM)-induced neurite outgrowth by picrosides, suggesting that picrosides activate MAP kinase-dependent signaling pathway. However, PD98059 did not affect the bFGF (2 ng/ml)-, staurosporine (10 nM)- and dbcAMP (0.3 mM)-induced neurite outgrowth in PC12D cells, indicating the existence of two components in neurite outgrowth induced by bFGF, staurosporine and dbcAMP, namely the MAP kinase-independent and the masked MAP kinase-dependent one. Furthermore, picrosides-induced enhancements of the bFGF-action were markedly inhibited by GF109203X (0.1 microM), a protein kinase C inhibitor. The expression of phosphorylated MAP kinase was markedly increased by bFGF (2 ng/ml) and dbcAMP (0.3 mM), whereas that was not enhanced by staurosporine (10 nM). Picrosides had no effect on the phosphorylation of MAP kinase induced by bFGF or dbcAMP and also unaffected it in the presence of staurosporine. These results suggest that picrosides I and II enhance bFGF-, staurosporine- or dbcAMP-induced neurite outgrowth from PC12D cells, probably by amplifying a down-stream step of MAP kinase in the intracellular MAP kinase-dependent signaling pathway. Picrosides I and II may become selective pharmacological tools for studying the MAP kinase-dependent signaling pathway in outgrowth of neurites induced by many kinds of neuritogenic substances including bFGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号