首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression‐related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive‐like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive‐like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences .  相似文献   

2.
Young adult honey bees work inside the beehive "nursing" brood around the clock with no circadian rhythms; older bees forage for nectar and pollen outside with strong circadian rhythms. Previous research has shown that the development of an endogenous rhythm of activity is also seen in the laboratory in a constant environment. Newly emerging bees maintained in isolation are typically arrhythmic during the first few days of adult life and develop strong circadian rhythms by about a few days of age. In addition, average daily levels of period (per) mRNA in the brain are higher in foragers or forager-age bees (> 21 days of age) relative to young nest bees (approximately 7 days of age). The authors used social manipulations to uncouple behavioral rhythmicity, age, and task to determine the relationship between these factors and per. There was no obligate link between average daily levels of per brain mRNA and either behavioral rhythmicity or age. There also were no differences in per brain mRNA levels between nurse bees and foragers in social environments that promote precocious or reversed behavioral development. Nurses and other hive-age bees can have high or low levels of per mRNA levels in the brain, depending on the social environment, while foragers and foraging-age bees always have high levels. These findings suggest a link between honey bee foraging behavior and per up-regulation. Results also suggest task-related differences in the amplitude of per mRNA oscillation in the brain, with foragers having larger diurnal fluctuation in per than nurses, regardless of age. Taken together, these results suggest that social factors may exert potent influences on the regulation of clock genes.  相似文献   

3.
Cardiac myosin heavy chain (MHC) isoform distribution has been shown to undergo changes during development, in response to hormonal stimuli, and during pathologic states like hypertension. We initiated a study of myosin light chain 1 (MLC1) expression in cardiac tissue to determine whether MLC1 undergoes changes similar to those seen for MHC. We isolated a full length cDNA for the predominant MLC1 sequence in rat hearts. This gene is expressed in ventricular tissue at much higher levels than in atrial tissue. Based on its expression pattern and sequence homology, this cDNA encodes the rat ventricular MLC1 and has been named RVMLC1. RVMLC1 is expressed at very low levels in cardiac tissue during early development and is expressed abundantly after birth and in adult hearts. The expression of RVMLC1 was found not to change in the hearts of rats with renovascular hypertension.  相似文献   

4.
5.
1. Chemical communication facilitates colony function across social insects, providing workers with information about individual and colony state. Although workers use chemical cues to detect developmental transitions in individuals, it is unknown whether workers can also use colony-level chemical profiles to detect the developmental state of their colony. Indeed, it is largely unknown how colony-level chemical profiles change as colonies grow and develop. 2. Reproductive onset is a major developmental transition and, in the honey bee, Apis mellifera, colonies must surpass a threshold colony size before workers will invest in reproduction. Given the ubiquity of chemical communication, the present study investigated whether colony-level chemical profiles change with colony size. 3. Chemical compounds deposited by workers of three colony sizes (5000, 10 000, 15 000 workers) collected over a 4-day time-series (0, 12, 24, 48, 72, and 96 h), as well as worker cuticular lipids, were sampled. 4. In total, 26 compounds deposited on nest surfaces and 20 compounds in worker cuticular lipids were identified; it took up to 24 h for sampled nest surfaces to reach saturation in the number and amount of deposited compounds. 5. Among these compounds, no qualitative or quantitative indicators of colony size were found, suggesting that deposited chemical compounds are not semiochemicals in this context. Volatile pheromones have also been shown previously to not play a role in signaling colony size. Therefore, honey bee workers are unlikely to use deposited chemical cues to detect colony size, and must rely instead on other modalities, such as physical cues of worker density.  相似文献   

6.
7.
8.
The four isoforms of the catalytic subunit of Na(+)/K(+)-ATPase identified in rats differ in their affinities for ions and ouabain. Moreover, its expression is tissue-specific, developmentally and hormonally regulated. The aim of the present work was to evaluate the influence of age on the ratio and density of these isoforms in crude membrane preparations from rat brain hemispheres, brainstem, heart ventricles and kidneys. In all tissues investigated, Na(+)/K(+)-ATPase activity was higher in adults than in neonates but brain tissues presented the most remarkable differences. In these tissues, ouabain inhibition curves for Na(+)/K(+)-ATPase activity revealed the presence of two processes with different sensitivities to ouabain. An increase of approximately sixfold in the expression of the high affinity isoforms was observed between newborn and adult rats. In contrast, the low affinity isoform increased only approximately twofold in brainstem whereas it increased ninefold in brain hemispheres. Unlike brain tissues, a decrease (almost fourfold) in the number of high affinity ouabain binding sites was observed during ontogenesis of the heart. Although limited by the inability to resolve alpha(2) and alpha(3) isoforms, present data indicate that the influence of development on the expression of Na(+)/K(+)-ATPase depends not only on the isoform, but also on the tissue where the enzyme is expressed.  相似文献   

9.
10.
11.
To test the hypothesis that colonies of honey bees composedof workers with faster rates of adult behavioral developmentare more defensive than colonies composed of workers with slowerbehavioral development, we determined whether there is a correlationbetween genetic variation in worker temporal polyethism andcolony defensiveness. There was a positive correlation for thesetwo traits, both for European and Africanized honey bees. Thecorrelation was larger for Africanized bees, due to differencesbetween Africanized and European bees, differences in experimentaldesign, or both. Consistent with these results was the findingthat colonies with a higher proportion of older bees were moredefensive than colonies of the same size that had a lower proportionof older bees. There also was a positive correlation betweenrate of individual behavioral development and the intensityof colony flight activity, and a negative correlation betweencolony defensiveness and flight activity. This suggests thatthe relationship between temporal polyethism and colony defensivenessmay vary with the manner in which foraging and defense dutiesare allocated among a colony's older workers. These resultsindicate that genotypic differences in rates of worker behavioraldevelopment can influence the phenotype of a honey bee colonyin a variety of ways.  相似文献   

12.
The relationship between changes in foraging patterns (inferred from waggle dance activity) and colony energy status (inferred from brood rearing activity, food storage, and colony weight) was examined for the African honey bee during a period of relative resource abundance and resource dearth. When resources were more abundant mean foraging distances (about 400 m) and foraging areas (4–5 km2) were small, and colonies recruited to 12–19 different sites per day. Colony foraging ranges and sites visited increased slightly during the dearth period, yet foraging continued to be concentrated within less than 10 km2. The degree to which fluctuations in foraging patterns were correlated with colony energy status varied with the availability of floral resources. During periods of relative forage abundance, increases in foraging range and number of sites visited were significantly correlated with increases in brood rearing and colony weight. In contrast, colonies examined during periods of resource dearth exhibited no correlations between foraging areas, foraging distances, and fluctuations in brood rearing, food storage, or colony weight. Thus, during dearth periods colonies may not be able to coordinate foraging patterns with changes in colony energy status.  相似文献   

13.
Foraging experience is correlated with structural plasticity of the mushroom bodies of the honey bee brain. While several neurotransmitter and intracellular signaling pathways have been previously implicated as mediators of these structural changes, none interact directly with the cytoskeleton, the ultimate effector of changes in neuronal morphology. The Rho family of GTPases are small, monomeric G proteins that, when activated, initiate a signaling cascade that reorganizes the neuronal cytoskeleton. In this study, we measured activity of two members of the Rho family of GTPases, Rac and RhoA, in the mushroom bodies of bees with different durations of foraging experience. A transient increase in Rac activity coupled with a transient decrease in RhoA activity was found in honey bees with 4 days foraging experience compared with same-aged new foragers. These observations are in accord with previous reports based on studies of other species of a growth supporting role for Rac and a growth opposing role for RhoA. This is the first report of Rho GTPase activation in the honey bee brain.  相似文献   

14.
The Src family of nonreceptor tyrosine kinases plays an important role in modulating signals that affect growth cone extension, neuronal differentiation, and brain development. Recent reports indicate that the Src SH2/SH3 binding partner AFAP-110 has the capacity to modulate actin filament integrity as a cSrc activating protein and as an actin filament bundling protein. Both AFAP-110 and a brain specific isoform called AFAP-120 (collectively referred to as AFAP) exist at high levels in chick embryo brain. We sought to identify the localization of AFAP in mouse brain in order to identify its expression pattern and potential role as a cellular modulator of Src family kinase activity and actin filament integrity in the brain. In E16 mouse embryos, AFAP expression levels were very high and concentrated in the olfactory bulb, cortex, forebrain, cerebellum, and various peripheral sensory structures. In P3 mouse pups, overall expression was reduced compared to E16 embryos, and AFAP was found primarily in olfactory bulb, cortex, and cerebellum. AFAP expression levels were significantly reduced in adult mice, with high expression levels only detected in the olfactory bulb. Western blot analysis indicated that concentrated expression of AFAP correlates well with the AFAP-120 isoform, which appears to be a splice variant of AFAP-110. As the expression pattern of AFAP overlaps with the reported expression patterns of cSrc and Fyn, we hypothesize that AFAP is positioned to modulate signal transduction cascades that direct activation of these nonreceptor tyrosine kinases and concomitant cellular changes that occur in actin filaments during brain development.  相似文献   

15.
16.
Identity has been established between chicken hemopexin and alpha 1-globulin "M," a plasma known for the hormone responsiveness of its synthesis in monolayer cultures of embryonic chicken hepatocytes (Grieninger, G., Plant, P. W., Liang, T. J., Kalb, R. G., Amrani, D., Mosesson, M. W., Hertzberg, K. M., and Pindyk, J. (1983) Ann. N. Y. Acad. Sci. 408, 469-489). Identification was based on immunological cross-reactivity, electrophoretic behavior on sodium dodecyl sulfate-polyacrylamide gels, heme-binding capacity, and pattern of cleavage by proteolytic enzymes. Electroimmunoassays were used to investigate plasma protein levels, particularly those of hemopexin, in the acute-phase response and embryonic development. Acute-phase plasma protein production, elicited by injection of chickens with turpentine, bore many similarities to the pattern of hepatocellular plasma protein synthesis produced in response to the addition of specific hormones in culture. The response of the stressed chickens included elevated levels of hemopexin and fibrinogen (5- and 2-fold, respectively) accompanied by a 50% drop in albumin. Hemopexin levels of developing chick embryos were measured for several days before and after hatching. Onset of hemopexin production occurred around the time of hatching, and was followed by a steep increase (more than 1000-fold over 4 days). Similarly, it was not until the 12th h of culture that hepatocytes isolated from both early and late stage chicken embryos began to produce hemopexin, although, from their initiation in culture, they secreted a number of other plasma proteins in quantity. After 12 h, hepatocellular output of hemopexin rapidly accelerated. This precocious induction ex vivo required no hormonal or macromolecular medium supplements. These observations indicate that the embryonic chicken hepatocyte culture system will provide a useful model for studying the regulation of hemopexin biosynthesis in hepatic development and the acute-phase response.  相似文献   

17.
Left–right asymmetries are common properties of nervous systems. Although lateralized sensory processing has been well studied, information is lacking about how asymmetries are represented at the level of neural coding. Using in vivo functional imaging, we identified a population-level left–right asymmetry in the honey bee''s primary olfactory centre, the antennal lobe (AL). When both antennae were stimulated via a frontal odour source, the inter-odour distances between neural response patterns were higher in the right than in the left AL. Behavioural data correlated with the brain imaging results: bees with only their right antenna were better in discriminating a target odour in a cross-adaptation paradigm. We hypothesize that the differences in neural odour representations in the two brain sides serve to increase coding capacity by parallel processing.  相似文献   

18.
Summary Deeply dark adapted (1 h) photoreceptor cells of the honey bee drone show a light-induced enhancement of sensitivity (facilitation) as an aftereffect of illumination or in the presence of dim backgrounds.The Ca2+-dependency of this effect was studied: Reduction of extracellular Ca2+ to 0.1 mM decreases the sensitivity of a dark adapted cell, and the light-induced increase in sensitivity due to repetitive, dim, 20 ms test flashes is slower than in normal saline. After a sensitizing conditioning light, the sensitivity drops faster in low-calcium saline. The light-induced enhancement of sensitivity is mimicked by pressure injections of low amounts of Ca2+ (Ca2+/EGTA-buffers; 0.15 M free Ca2+) into a dark adapted cell. Injection of EGTA alone decreases the sensitivity. Injection of a solution containing ca1 mM free Ca2+ sequentially decreases and later increases the sensitivity transiently.These results suggest a model in which a progressive increase in intracellular Ca2+ concentration by light first increases (facilitates), and, at higher concentrations, decreases (light adapts) the sensitivity of the cells. One possible site of action for this positive and negative feedback control of cell sensitivity by Ca2+ is the endoplasmic reticulum.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号