首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
This investigation determined whether thylakoid proteins would be degraded more rapidly or not in senescing wheat (Triticum aestivum L. em. Thell.) leaves concurrently exposed to high temperatures. Excised leaves were pulse-labelled with [35S]-methionine for a 12 h period, and then incubated at 22,32 or 42°C for 0, 1, 2, or 3 d, before extracting a thylakoid enriched membrane sample. After electrophoretic separation, two prominent [35S]-labelled protein bands were chosen for further analyses. Band A contained the D-1 thylakoid protein and band B contained thylakoid proteins of the light harvesting complex (LHCII) associated with photosystem II (PSII). Total protein, [35S]-labelled protein, band A protein, and band B protein within the thylakoid enriched membrane samples were measured. Unlabelled thylakoid enriched membrane samples, extracted from leaves given similar treatments, were used to measure uncoupled whole-chain and photosystem II (PSII) electron transport and chlorophyll fluorescence. Accentuated decline in whole-chain and PSII electron transport, increasing Fo values, and decreasing Fmax values were a result of high temperature injury in leaves treated at 42°C. None of the thylakoid enriched membrane protein fractions were degraded more rapidly in high-temperature treated leaves. Degradation of the total [35S]-labelled membrane proteins and band B was inhibited by the 42°C treatment. The results indicate that high temperature stress may disrupt some aspects of normal senescence.  相似文献   

5.
The unicellular photoheterotrophic cyanobacterium Synechococcus sp. PCC 7002 was shown to encode two genes for the Photosystem II reaction center core protein D2 and one gene for the reaction center chlorophyhll-binding protein CP43. These three genes were cloned and their DNA sequences determined along with their flanking DNA sequences. Northern hybridization experiments show that both genes which encode D2, psbD1 and psbD2, are expressed at roughly equivalent levels. For each of the two psbD genes, there are 18 nucleotide differences among the 1059 nucleotides which are translated. The DNA sequences surrounding the coding sequences are nearly 70% divergent. Despite the DNA sequence differences in the genes, the proteins encoded by the two genes are predicted to be identical. The proteins encoded by psbD1 and psbD2 are 92% homologous to other sequenced cyanobacterial psbD genes and 86% homologous to sequenced chloroplast-encoded psbD genes.The single gene for CP43, psbC, overlaps the 3 end of psbD1 and is co-transcribed with it. Results from previous sequencing of psbC genes encoded by chloroplasts suggest that the 5 end of the psbC gene overlaps the 3 end of the coding sequence of psbD by 50 nucleotides. In Synechococcus sp. PCC 7002, the methionine codon previously proposed to be the start codon for psbC is replaced by an ACG (threonine) codon. We propose an alternative start for the psbC gene at a GTG codon 36 nucleotides downstream from the threonine codon. This GTG codon is preceded by a consensus E. coli-like ribosome binding sequence. Both the GTG start codon and its preceding ribosome binding sequence are conserved in all psbC genes sequenced from cyanobacteria and chloroplasts. This suggests that all psbC genes start at this alternative GTG codon. Based on this alternative start codon, the gene product is 85% identical to other cyanobacterial psbC gene products and 77% identical to eucaryotic chloroplast-encoded psbC gene products.  相似文献   

6.
The chloroplast Deg1 protein performs proteolytic cleavage of the photodamaged D1 protein of the photosystem II (PSII) reaction center, PSII extrinsic subunit PsbO and the soluble electron carrier plastocyanin. Using biochemical, immunological and mass spectrometry approaches we showed that the heterogeneously expressed Deg1 protease from Arabidopsis thaliana can be responsible for the degradation of the monomeric light-harvesting complex antenna subunits of PSII (LHCII), CP26 and CP29, as well as PSII-associated PsbS (CP22/NPQ4) protein. The results may indicate that cytochrome b 6 protein and two previously unknown thylakoid proteins, Ptac16 and an 18.3-kDa protein, may be the substrates for Deg1. The interaction of Deg1 with the PsbS protein and the minor LHCII subunits implies its involvement in the regulation of both excess energy dissipation and state transition adaptation processes.  相似文献   

7.
8.
Nie GY  Baker NR 《Plant physiology》1991,96(1):184-191
The effects of reductions in growth temperature on the development of thylakoids of maize (Zea mays var LG11) leaves are examined. Thylakoids isolated from mesophyll cells of leaves grown at 17° and 14°C, compared with 25°C, exhibited a decreased accumulation of many polypeptides, which was accompanied by a loss of activity of photosystems (PS) I and II. Probing the polypeptide profiles with a range of antibodies specific for thylakoid proteins demonstrated that a number of polypeptides encoded by the chloroplast genome failed to accumulate at low temperatures. Although thylakoid protein synthesis was reduced severely at 14°C compared with 25°C, major synthesis of both chloroplast and nuclear encoded polypeptides was detected. It is suggested that the lack of accumulation of some thylakoid proteins at low temperatures may be due to an inability to stabilize the proteins in the membranes. A number of thylakoid polypeptides were found to appear as the growth temperature was decreased. Analyses of pigments and polypeptides demonstrated that decreases in the photosystem reaction center core complexes occur relative to the light harvesting complex associated with PS II at reduced growth temperatures. Differential effects on the development of PSI and PSII were also observed, with PSII activity being preferentially reduced. Reductions in PSII content and activity occurred in parallel with decreases in the quantum yield and light-saturated rate of CO2 assimilation. Fractionation of thylakoid pigment-protein complexes showed that the ratio of monomeric:oligomeric form of the light harvesting complex associated with PSII increased at low growth temperature, which is consistent with a chill-induced modification of thylakoid organization. Many, but not all, of the characteristic changes in thylakoid protein metabolism, which were observed when leaves were grown at low temperatures in controlled environments, were identified in leaves of a field maize crop during the early growing season when low temperatures were experienced by the crop. Chill-induced perturbations of thylakoid development can occur in the field in temperate regions and may have implications for the photosynthetic productivity of the crop.  相似文献   

9.
10.
A repressible/inducible chloroplast gene expression system has been used to conditionally inhibit chloroplast protein synthesis in the unicellular alga Chlamydomonas reinhardtii. This system allows one to follow the fate of photosystem II and photosystem I and their antennae upon cessation of chloroplast translation. The main results are that the levels of the PSI core proteins decrease at a slower rate than those of PSII. Amongst the light-harvesting complexes, the decrease of CP26 proceeds at the same rate as for the PSII core proteins whereas it is significantly slower for CP29, and for the antenna complexes of PSI this rate is comprised between that of CP26 and CP29. In marked contrast, the components of trimeric LHCII, the major PSII antenna, persist for several days upon inhibition of chloroplast translation. This system offers new possibilities for investigating the biosynthesis and turnover of individual photosynthetic complexes in the thylakoid membranes. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

11.
In order to investigate the role and function of the hydrophilic region between transmembrane regions V and CI in the photosystem II core antenna protein CP43, we introduced eight different deletions in psbC of Synechocystis sp; PCC 6803 resulting in a loss of 7–11 codons in evolutionary conserved domains in this region. All deletions resulted in an obligate photoheterotrophic phenotype (requirement of glucose for cell growth) and the absence of any detectable oxygen evolution activity. The various deletion mutations showed a different impact on the amount of CP43 in the thylakoid, ranging from wild-type levels of (a now slightly smaller) CP43 to no detectable CP43 at all. All deletions led to a decrease in the amount of the D1 and D2 proteins in the thylakoids with a larger effect on D2 than on D1. CP47, the other major chlorophyll-binding protein, was present in reduced but significant amounts in the thylakoid. Herbicide binding (diuron) was lost in all but one mutant indicating the PSII components are not assembled into functionally intact complexes. Fluorescence-emission spectra confirmed this notion. This indicates that the large hydrophilic loop of CP43 plays an important role in photosystem II, and even though a shortened CP43 is present in thylakoids of most mutants, functional characteristics resemble that of a mutant with interrupted psbC.Abbreviations CP chlorophyll-binding protein - DCPIP 2,6-dichlorophenolindophenol - DPC diphenylcarbazide - ferricyanide K3Fe(CN)6 - HEPES N-(2-hydroxyelthyl)piperazine-N-(2-hydroxypropane sulfonic acid) - MES 2-(N-morpholino)-ethanesulfonic acid - PCC Pasteur Culture Collection - PCR polymerase chain reaction - PS photosystem - QA first quinone acceptor in PSII - QB second quinone acceptor in PSII - Z redox-active tyrosine (Y161) in D1 serving as electron carrier between the Mn cluster and P680  相似文献   

12.
The cytochrome b-f complex is composed of four polypeptide subunits, three of which, cytochrome f, cytochrome b-563 and subunit IV, are encoded in chloroplast DNA and synthesised within the chloroplast, and the fourth, the Rieske FeS protein, is encoded in nuclear DNA and synthesised in the cytoplasm. The assembly of the cytochrome b-f complex therefore requires the interaction of subunits encoded by different genomes. A key role for the nuclear-encoded Rieske FeS protein in the assembly of the complex is suggested by a study of cytochrome b-f complex mutants. The assembly of individual subunits of the complex may be regulated by the availability of prosthetic groups. The genes for the chloroplast-encoded subunits and cDNA clones for the Rieske FeS protein have been isolated and characterised. Cytochrome f and the Rieske FeS protein are synthesised initially with N-terminal presequences required for their correct assembly within the chloroplast. The deduced amino acid sequences of the four subunits have been used to suggest models for the arrangement of the polypeptides in the thylakoid membrane.  相似文献   

13.
Cytochrome f: Structure,function and biosynthesis   总被引:1,自引:1,他引:0  
Cytochrome f is an intrinsic membrane component of the cytochrome bf complex, transferring electrons from the Rieske FeS protein to plastocyanin in the thylakoid lumen. The protein is held in the thylakoid membrane by a single transmembrane span located near its C-terminus with a globular hydrophilic domain extending into the lumen. The globular domain of the turnip protein has recently been crystallised, offering the prospect of a detailed three-dimensional structure. Reaction with plastocyanin involves localised positive charges on cytochrome f interacting with the acidic patch on plastocyanin and electron transfer via the surface-exposed tyrosine residue (Tyr83) of plastocyanin. Apocytochrome f is encoded in the chloroplast genome and is synthesised with an N-terminal presequence which targets the protein to the thylakoid membrane. The synthesis of cytochrome f is coordinated with the synthesis of the other subunits of the cytochrome bf complex.  相似文献   

14.
15.
Differential redox regulation of thylakoid phosphoproteins was studied in winter rye plants in vivo. The redox state of chloroplasts was modulated by growing plants under different light/temperature conditions and by transient shifts to different light/temperature regimes. Phosphorylation of PSII reaction centre proteins D1 and D2, the chlorophyll a binding protein CP43, the major chlorophyll a/b binding proteins Lhcb1 and Lhcb2 (LHCII) and the minor light‐harvesting antenna protein CP29 seem to belong to four distinct regulatory groups. Phosphorylation of D1 and D2 was directly dependent on the reduction state of the plastoquinone pool. CP43 protein phosphorylation generally followed the same pattern, but often remained phosphorylated even in darkness. Phosphorylation of CP29 occurred upon strong reduction of the plastoquinone pool, and was further enhanced by low temperatures. In vitro studies further demonstrated that CP29 phosphorylation is independent of the redox state of both the cytochrome b6/f complex and the thiol compounds. Complete phosphorylation of Lhcb1 and 2 proteins, on the contrary, required only modest reduction of the plastoquinone pool, and was subject to inhibition upon increase in the thiol redox state of the stroma. Furthermore, the reversible phosphorylation of Lhcb1 and 2 proteins appeared to be an extremely dynamic process, being rapidly modulated by short‐term fluctuations in chloroplast redox conditions.  相似文献   

16.
Assembly of photosystem II (PSII) occurs sequentially and requires several auxiliary proteins, such as ALB3 (ALBINO3). Here, we describe the role of the Arabidopsis thaliana thylakoid membrane protein Tellurite resistance C (AtTerC) in this process. Knockout of AtTerC was previously shown to be seedling‐lethal. This phenotype was rescued by expressing TerC fused C–terminally to GFP in the terc–1 background, and the resulting terc–1TerC–GFP line and an artificial miRNA‐based knockdown allele (amiR‐TerC) were used to analyze the TerC function. The alterations in chlorophyll fluorescence and thylakoid ultrastructure observed in amiR‐TerC plants and terc–1TerC–GFP were attributed to defects in PSII. We show that this phenotype resulted from a reduction in the rate of de novo synthesis of PSII core proteins, but later steps in PSII biogenesis appeared to be less affected. Yeast two‐hybrid assays showed that TerC interacts with PSII proteins. In particular, its interaction with the PSII assembly factor ALB3 has been demonstrated by co‐immunoprecipitation. ALB3 is thought to assist in incorporation of CP43 into PSII via interaction with Low PSII Accumulation2 (LPA2) Low PSII Accumulation3 (LPA3). Homozygous lpa2 mutants expressing amiR‐TerC displayed markedly exacerbated phenotypes, leading to seedling lethality, indicating an additive effect. We propose a model in which TerC, together with ALB3, facilitates de novo synthesis of thylakoid membrane proteins, for instance CP43, at the membrane insertion step.  相似文献   

17.
Exposure of 25 °C-grown, seven-day-old rice seedlings to mild heat stress of 40 °C for 24 h in dark did not cause any change in protein or pigment content of the thylakoids, but produced major disorganization of chloroplast ultrastructure. This heat induced disorganization of thylakoid structure/organization caused significant (65 percnt;) loss in PSII activity, slight loss in PSI activity, and brought about a decrease in relative quantum efficiency of PSII. The herbicide 14C atrazine binding assay revealed a decreased number of binding sites of the herbicide and altered the herbicide dissociation constant, suggesting that the heat induced disorganization of the thylakoids affects the acceptor side of PSII. Cation induced Chla fluorescence analyses at room temperature and low temperature indicated thatin vivo heat exposure of rice seedlings altered the extent of energy transfer in favor of PSI. Immunoblotting analysis of several PSII polypeptides such as D1/D2 reaction dimer and Cyt b559 showed no major changes due to mild heat exposure except for the PSII core antenna polypeptide (CP43), which could reflect the reduction in PSII activity observed in light saturation studies. Similarly, haeme staining did not indicate any change in other cytochrome related polypeptides. Our results therefore clearly suggest thatin vivo exposure of rice seedlings to elevated (40 °C) temperature caused thylakoid structural disorganization, and this disorganization of some of the thylakoid complexes resulted in a loss in thylakoid photochemical function.  相似文献   

18.
PsbK is encoded by the chloroplast psbK gene and is one of the small polypeptides of photosystem II (PSII). This polypeptide is required for accumulation of the PSII complex. In the present study, we generated an antibody against recombinant mature PsbK of Chlamydomonas and used it in Western blots to localize PsbK in the PSII core complex. PsbK was found in the thylakoid membranes, and purification of the PSII core complex from detergent-solubilized thylakoid membranes showed that PsbK is tightly associated with the PSII core complex. We used potassium thiocyanate to separate PSII into subcore complexes, including the D1/D2/cytochrome b559 reaction center complex, CP47, and CP43, and we found that PsbK co-purifies with one of the core antenna complexes, CP43, during ion exchange chromatography. Subsequent gel filtration chromatography of the purified CP43 confirmed that PsbK is tightly associated with CP43. Steady-state levels of PsbK were also determined in Chlamydomonas mutants expressing various levels of PSII. Quantitative Western blotting revealed that the levels of PsbK in these mutants are approximately equal to those of CP43, suggesting that PsbK is stable only when associated with CP43 in the chloroplast. Together, our results indicate that PsbK is an integral part of the PSII complex and may participate in the assembly and stability of the PSII complex.  相似文献   

19.
The 'stay-green' mutation cytG in soybean ( Glycine max ) partially inhibits the degradation of the light-harvesting complex II (LHCII) and the associated chlorophyll during monocarpic senescence. cytG did not alter the breakdown of the cytochrome b 6/ f complex, thylakoid ATP synthase or components of Photosystem I. In contrast, cytG accelerated the loss of oxygen evolution activity and PSII reaction-centre proteins. These data suggest that LHCII and other thylakoid components are degraded by separate pathways. In leaves induced to senesce by darkness, cytG inhibited the breakdown of LHCII and chlorophyll, but it did not enhance the loss of PSII-core components, indicating that the accelerated degradation of PSII reaction centre proteins in cytG was light dependent. Illumination of mature and senescent leaves of wild-type soybean in the presence of an inhibitor (lincomycin) of chloroplast protein synthesis revealed that senescence per se did not affect the rate of photoinhibition in leaves. Likewise, mature leaves of the cytG mutant did not show more photoinhibition than wild-type leaves. However, in senescent cytG leaves, photoinhibition proceeded more rapidly than in the wild-type. We conclude that the cytG mutation enhances photoinhibition in senescing leaves, and photoinhibition causes the rapid loss of PSII reaction-centre proteins during senescence in cytG .  相似文献   

20.
Reversible phosphorylation of thylakoid light‐harvesting proteins is a mechanism to compensate for unbalanced excitation of photosystem I (PSI) versus photosystem II (PSII) under limiting light. In monocots, an additional phosphorylation event on the PSII antenna CP29 occurs upon exposure to excess light, enhancing resistance to light stress. Different from the case of the major LHCII antenna complex, the STN7 kinase and its related PPH1 phosphatase were proven not to be involved in CP29 phosphorylation, indicating that a different set of enzymes act in the high‐light (HL) response. Here, we analyze a rice stn8 mutant in which both PSII core proteins and CP29 phosphorylation are suppressed in HL, implying that STN8 is the kinase catalyzing this reaction. In order to identify the phosphatase involved, we produced a recombinant enzyme encoded by the rice ortholog of AtPBCP, antagonist of AtSTN8, which catalyzes the dephosphorylation of PSII core proteins. The recombinant protein was active in dephosphorylating P‐CP29. Based on these data, we propose that the activities of the OsSTN8 kinase and the antagonistic OsPBCP phosphatase, in addition to being involved in the repair of photo‐damaged PSII, are also responsible for the HL‐dependent reversible phosphorylation of the inner antenna CP29.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号