首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Empirical and theoretical studies have highlighted that plantcompetition and species diversity are substantially affected by interactionsamong plant growth and nutrient uptake rates, root lateral spread, rootplasticity, and small scale soil nutrient heterogeneity. This study wasdesignedto (a) experimentally estimate parameters regarding rootscaling patterns, root biomass allocation, growth rates, nutrient productivity,and root nutrient influx rates of 55 plant species common to Great Plainsgrasslands; and (b) determine if grasses and forbs can beclassified into statistically distinct groups based on these characteristics.Wefound that: (1) In all species root lateral spread, rootlength, and root surface area had significant allometric scaling relationshipswith root biomass, but that the relationships were unaffected by Navailability.(2) Reductions in the supply of N increased the root:shootratio in 62% of the species. (3) The frequency distributionandmean values of maximum relative growth rates were very similar for grasses andforbs/shrubs, but mid successional grasses had a higher relative growth ratethan late successional ones. (4) In 78% of the species tested,N productivity was increased by reductions in the N supply.(5)When subjected to a high N supply, the N and P productivity of grasses was, onaverage, higher than that of forbs/shrubs, and the N and P productivity ofC4 grasses was, on average, higher than that of C3grasses. No differences were found under a low N supply. (6)Nodifferences on the average maximum N and P influx rates per unit of rootsurfacearea were found between grasses and forbs or between C3 andC4 grasses, but both were correlated with maximum relative growthrate. (7) The set of parameters we measured were able toseparate grasses and forbs/shrubs into statistically distinct groups that tendto follow in broad terms the coarse vs. fine scaleforaging strategies hypothesis.  相似文献   

2.
Summary Rabbits immunized against the thylakoid system of chloroplasts form two different antibodies against the reducing site of photosystem I. One inhibits photosynthetic NADP+ and ferredoxin dependent cytochrome c reduction, but not photosynthetic anthraquinone reduction by isolated spinach chloroplasts. The other inhibits all three reductions. Both do not inhibit a Hill reaction with ferricyanide. The presumed antigen moiety against these antibodies was isolated as a water soluble factor released from lyophilized chloroplasts after treatment with diethylether. The heat stable, nondialysable factor has absorption peaks at 262 and 315 m. It is autoxidizable and has the property of a cytochrome c reducing substance. The factor neutralizes the antibody inhibition of photosynthetic anthraquinone and ferredoxin reduction. It is proposed that the soluble factor is the prosthetic group of the primary acceptor of photosystem I.Abbreviations CRS cytochrome c reducing substance - FRS ferredoxin reducing substance - DAD diaminodurene - TMPD N-tetramethyl-p-phenylene-diamine. The work reported on here was supported by Verband der chemischen Industrie — Fonds der chemischen Industrie  相似文献   

3.
Phytoplankton primary productivity of eleven irrigation reservoirs located in five river basins in Sri Lanka was determined on a single occasion together with light climate and nutrient concentrations. Although area-based gross primary productivity (1.43–11.65 g O2 m–2 d–1) falls within the range already established for tropical water bodies, net daily rate was negative in three water bodies. Light-saturated optimum rates were found in water bodies, with relatively high algal biomass, but photosynthetic efficiency or specific rates were higher in water bodies with low algal biomass, indicating nutrient limitation or physiological adaptation of phytoplankton. Concentrations of micronutrients and algal biomass in the reservoirs are largely altered by high flushing rate resulting from irrigation release. Underwater light climate and nutrient availability control the rate of photosynthesis and subsequent area-based primary production to a great extent. However, morpho-edephic index or euphotic algal biomass in the most productive stratum of the water column is not a good predictor of photosynthetic capacity or daily rate of primary production of these shallow tropical irrigation reservoirs.  相似文献   

4.
Enzymes that are regulated by the ferredoxin/thioredoxin system in chloroplasts — fructose-1,6-bisphosphatase (FBPase), sedoheptulose-1,7-bisphosphatase purified from two different types of photosynthetic prokaryotes (cyanobacteria, purple sulfur bacteria) and tested for a response to thioredoxins. Each of the enzymes from the cyanobacterium Nostoc muscorum, an oxygenic organism known to contain the ferredoxin/thioredoxin system, was activated by thioredoxins that had been reduced either chemically by dithiothreitol or photochemically by reduced ferredoxin and ferredoxin-thioredoxin reductase. Like their chloroplast counterparts, N. muscorum FBPase and SBPase were activated preferentially by reduced thioredoxin f. SBPase was also partially activated by thioredoxin m. PRK, which was present in two regulatory forms in N. muscorum, was activated similarly by thioredoxins f and m. Despite sharing the capacity for regulation by thioredoxins, the cyanobacterial FBPase and SBPase target enzymes differed antigenically from their chloroplast counterparts. The corresponding enzymes from Chromatium vinosum, an anoxygenic photosynthetic purple bacterium found recently to contain the NADP/thioredoxin sytem, differed from both those of cyanobacteria and chloroplasts in showing no response to reduced thioredoxin. Instead, C. vinosum FBPase, SBPase, and PRK activities were regulated by a metabolite effector, 5-AMP. The evidence is in accord with the conclusion that thioredoxins function in regulating the reductive pentose phosphate cycle in oxygenic prokaryotes (cyanobacteria) that contain the ferredoxin/thioredoxin system, but not in anoxygenic prokaryotes (photosynthetic purple bacteria) that contain the NADP/thioredoxin system. In organisms of the latter type, enzyme effectors seem to play a dominant role in regulating photosynthetic carbon dioxide assimilation.  相似文献   

5.
M. A. Khan 《Hydrobiologia》1986,135(3):233-242
L. Naranbagh (alt. 1587 m) is a polymictic, shallow marl lake in the flood-plain valley of Kashmir, India. Macrofloral affinities resemble Potamogeton Type of Forsberg (1965) with alkaline waters, not rich in phosphorus. CaCO3 precipitation coupled with decline in Ca2+ and alkalinity values are characteristic of the lake. Fluctuations in Mg2+, Na+, K+, and Cl were relatively conservative. The levels of PO inf4 sup3– -P and NO inf3 sup– -N indicate moderate fertility of the lake water.Persistence of a summer-autumn planktonic algal pulse is related to favourable irradiance, high water temperatures, and increased photosynthetic efficiency values. The most striking seasonality in photosynthetic rates (m–2 h–1) between winter minimum (3 mg Cassim) and summer maximum (75.4 mg Cassim) is determined by mainly climatic changes. Energy flow gave annual phytoplankton production of 51.95 × 102 KJ m–2 for the ecosystem.The nutrient levels and productivity rates suggest mesotrophic status of L. Naranbagh in classic oligoeutrophic classification of lake types.  相似文献   

6.
Gracilaria strain G-16S was cultured in various phosphorus (P) supply rates with low or high nitrogen (N) supply to determine the effects of nutrient supply on its productivity, agar content and physical properties of the agar. Productivity was reduced after four weeks of growth in zero P supply as plants reached 0.07% P tissue content (critical level), with fragmentation of these plants by six weeks (0.05% P; minimum viable level). Native agar content was higher in low P and high N, or low N conditions. Agar content appeared to increase with decreasing P under high N supply. This increase was not apparent with alkali treatment prior to extraction. Agar gel strength was greatly increased by alkali treatment. The highest gel strengths were obtained under high N supply at all P supply rates except zero P, and under low N supply at 12 M P week–1. Native agar gel strengths showed a similar pattern on a lower scale. Melting temperatures were higher in agars with higher gel strengths. Dynamic gelling temperatures were generally high for alkali-treated agar, with agar from plants grown in zero P supply showing a slightly elevated gelling temperature. Melting and gelling temperatures of native agars with the highest gel strengths were in the same range as bacteriological agar. These results show that P and N supply affects productivity, agar content and agar physical properties, but the tradeoffs between a slightly higher agar quantity under nutrient limitation and higher agar quality under nutrient-replete conditions seem to favor the latter.  相似文献   

7.
Darcy-Hall TL 《Oecologia》2006,148(4):660-671
The relative effects of nutrients and herbivores on primary producers are rarely compared across ecosystems that vary in potential primary productivity. Furthermore, proposed mechanisms to explain such patterns remain understudied. Here, I examine the strength of nutrient and grazer (herbivore) limitation (i.e., the extent to which producers’ growth is limited by insufficient nutrient supply or herbivory) of benthic algae across 13 southwest Michigan lakes that vary widely in productivity (i.e., resource supply). I compare the observed patterns of algal limitation and species composition to those predicted by two simple models: one that includes multiple species and species’ traits (the food-web model) and one that includes no variation in species or traits (the food-chain model). Species in the food-web model are assumed to display a tradeoff between resource competitive ability and resistance to herbivory (the “keystone predator” tradeoff). Among these lakes, benthic algal nutrient limitation was positive and declined significantly along a lake N:P gradient. In contrast, grazer limitation was negative and was not significantly related to any of the measured lake productivity variables. Negative grazer limitation indicated that the removal of grazers caused unexpected declines in algal biomass, which were potentially due to indirect, positive effects (e.g., nutrient recycling) of grazers. Nutrient limitation was significantly stronger than grazer limitation across lakes, which was more consistent with the food-web versus food-chain model. Changes in algal composition were also broadly consistent with predictions of the food-web model in that vulnerable, superior nutrient competitors dominated in low productivity lakes and more grazer-resistant species were observed in high productivity lakes. In general, these results point to the importance of examining limiting factors across systems and the consideration of key species’ traits when predicting and interpreting patterns.  相似文献   

8.
Duarte  P.  Ferreira  J. G. 《Hydrobiologia》1993,260(1):183-189
This paper presents a combined approach for parameter estimation in models of primary production. The focus is on gross primary production and nutrient assimilation by seaweeds.A database of productivity determinations, biomass and mortality measurements and nutrient uptake rates obtained over one year for Gelidium sesquipedale in the Atlantic Ocean off Portugal has been used. Annual productivity was estimated by harvesting methods, and empirical relationships using mortality/wave energy and respiration rates have been derived to correct for losses and to convert the estimates to gross production. In situ determinations of productivity have been combined with data on the light climate (radiation periods, intensity, mean turbidity) to give daily and annual productivity estimates. The theoretical nutrient uptake calculated using a Redfield ratio approach and determinations of in situ N and P consumption by the algae during incubation periods have also been compared.The results of the biomass difference and incubation approaches are discussed in order to assess the utility of coefficients determined in situ for parameter estimation in seaweed production models.  相似文献   

9.
Effects of UV-B radiation on photosynthesis and growth of terrestrial plants   总被引:25,自引:0,他引:25  
The photosynthetic apparatus of some plant species appears to be well-protected from direct damage from UV-B radiation. Leaf optical properties of these species apparently minimizes exposure of sensitive targets to UV-B radiation. However, damage by UV-B radiation to Photosystem II and Rubisco has also been reported. Secondary effects of this damage may include reductions in photosynthetic capacity, RuBP regeneration and quantum yield. Furthermore, UV-B radiation may decrease the penetration of PAR, reduce photosynthetic and accessory pigments, impair stomatal function and alter canopy morphology, and thus indirectly retard photosynthetic carbon assimilation. Subsequently, UV-B radiation may limit productivity in many plant species. In addition to variability in sensitivity to UV-B radiation, the effects of UV-B radiation are further confounded by other environmental factors such as CO2, temperature, light and water or nutrient availability. Therefore, we need a better understanding of the mechanisms of tolerance to UV-B radiation and of the interaction between UV-B and other environmental factors in order to adequately assess the probable consequences of a change in solar radiation.Abbreviations Amax light and CO2 saturated rate of oxygen evolution - Ci internal CO2 concentration - Fv/Fm ratio of variable to total fluorescence yield - PAR photosynthetically active radiation (400–700 nm) - PS II Photosystem II - app apparent quantum yield of photosynthesis - SLW specific leaf weight - UV-B ultraviolet-B radiation between 290–320 nm  相似文献   

10.
The lower foliar photosynthetic rates seen in shoots in the upper crowns of tall trees than those in seedlings could be caused by extrinsic factors, such as hydraulic conductance, for shoots or by irreversible intrinsic change in the meristems during tree development. To clarify which is most significant, we compared foliar gas exchange characteristics and water relations among scions of Japanese cedar (Cryptomeria japonica D. Don) grafted into the upper crowns of tall trees, rooted cuttings developed from scions of the same clones, and intact shoots in the upper crowns of the tall trees. Grafted shoots had the same water regime as intact shoots, as confirmed by their similar water potentials at the turgor loss point, which were more negative than those of the rooted cuttings. No significant difference was observed between the grafted and intact shoots in their light-saturated photosynthetic rate (Pmax), stomatal conductance (gs), photosynthetic capacity, carboxylation efficiency, ratio of intercellular to ambient CO2 concentration (Ci/Ca), and carbon isotope composition (13C). Compared with the rooted cuttings, the grafted shoots showed significantly lower Pmax, gs, photosynthetic capacity, and carboxylation efficiency (to 49%, 31%, 68%, and 65%, respectively). The Ci/Ca and 13C indicated significantly stronger instantaneous and long-term stomatal limitation in the grafted shoots than in the rooted cuttings. These indicate that changes in extrinsic factors can reduce foliar photosynthetic rates in shoots in the upper crowns of tall trees as a result of stronger stomatal limitation and reduced photosynthetic activity, without irreversible intrinsic changes in the meristems.  相似文献   

11.
The importance of reduced leaf conductance (stomatal and boundary layer) in limiting photosynthetic rates during water stress was studied in Encelia frutescens, a drought-deciduous leaved subshrub of the Mohave and Sonoran Deserts. Light-saturated CO2 assimilation rates of greenhouse grown plants decreased from 42.6±1.6mol CO2 m-2 s-1 (x±s.e.) to 1.7±1.7 mol CO2 m-2s-1 as leaf water potential decreased from-1.5 MPa to-4.0 MPa. The dependence of light saturated, CO2 assimilation rate on leaf intercellular CO2 concentrations between 60 and 335 l l-1 was also determined as leaf water potential decline. This enabled us to compare the effects of leaf water potentials on limitations to carbon assimilation imposed by leaf conductance and by intrinsic photosynthetic capacity. Both leaf conductance and intrinsic photosynthetic capacity decreased with decreasing leaf water potential, but the decrease in leaf conductance was proportionately greater. The relative stomatal limitation, defined as the percent limitation in photosynthetic rate due to the presence of gas-phase diffusional barriers, increased from (x±s.e.) to 41±3% as water potentials became more negative. Since both leaf conductance and intrinsic photosynthetic capacity were severely reduced in an absolute sense, however, high photosynthetic rates could not have been restored at low leaf water potentials without simultaneous increases in both components.  相似文献   

12.
Differences in the biogeochemistry of nitrogen (N) and phosphorus (P) lead to differential losses and inputs during and over time after fire such that fire may affect nutrient limitation of primary productivity. We conducted a nutrient addition experiment in scrubby flatwoods, a Florida scrub community type, to test the hypothesis that nutrient limitation of primary productivity shifts from N limitation in recently burned sites to P limitation in longer unburned sites. We added three levels of N, P, and N and P together to sites 6 weeks, 8 years, and 20 years postfire and assessed the effects of nutrient addition on above- and belowground productivity and nutrient concentrations. At the community level, nutrient addition did not affect aboveground biomass, but root productivity increased with high N?+?P addition in sites 8 and 20 years after fire. At the species level, N addition increased leaf biomass of saw palmetto (Serenoa repens) in sites 6 weeks and 20 years postfire, while P addition increased foliar %P and apical shoot growth of scrub oak (Quercus inopina) in sites 8 and 20 years postfire, respectively. Contrary to our hypothesis, nutrient limitation does not appear to shift with time after fire; recently burned sites show little evidence of nutrient limitation, while increased belowground productivity indicates that scrubby flatwoods are co-limited by N and P at intermediate and longer times after fire.  相似文献   

13.
Growth and photosynthetic characteristics, P max (maximum light-saturated oxygen production rate) and (photosynthetic affinity), of Microcystis aeruginosa were studied in continuous cultures under a range of photoperiod lengths and growth irradiances. Microcystis showed a low specific maintenance rate constant and a high growth affinity for light (typical cyanobacterial features), but required a dark period to obtain maximum growth rate. P max and per unit dry weight increased, as did pigment content, when less light became available. By regulation in and P max (crucial in light-limiting and high-light conditions, respectively) this buoyant species can flourish in low light, but also in high-light environments which may arise when buoyancy is lost.The two different types of light conditions affected growth, and photosynthesis, in different ways. One needs thus to discriminate between photoperiod- and irradiance-limitation, which restricts the utility of simple algal growth models. It was emphasized that photosynthetic adaptation patterns of light-limited species may resemble short-term nutrient uptake kinetics of nutrient-limited organisms.With prior knowledge of the growth limitation, we were able to assess the growth rate of a natural population of Microcystis from its photosynthetic response and from data of laboratory cultures of a known physiological state.  相似文献   

14.
Three marine phytoplankters (Isochrysis galbana, Chaetoceros calcitrans andThalassiosira pseudonana), commonly used in the culture of bivalve larvae, were grown in batch or semi-continuous cultures. Changes in protein, carbohydrate, lipid and some fatty acids were measured as growth became limited by nitrogen, silicon, phosphorus or light. Under N starvation (2 d) the % lipid remained relatively constant, while% carbohydrate increased and% protein decreased in all 3 species compared to cells growing under no nutrient limitation. Under Si starvation (6 h) there was no change in lipid, protein or carbohydrates. The amount of two fatty acids, 20 : 53 and 22 : 63 remained relatively constant under N, P and Si starvation, exept for a sharp drop in the cells of P-starvedT. pseudonana. However, there were pronounced species differences withI. galbana containing significantly less 20 : 5 3 thanC. calcitrans orT. pseudonana. Under light limitation the amount of lipid per cell showed no consistent trend over a range of irradiances for all 3 species. The amount of N per cell (an index of protein content) as a function of irradiance, was relatively constant forI. galbana andT. pseudonana, while the amount of N per cell was lower under low irradiances forC. calcitrans. These examples of changes in protein, carbohydrate, lipid and certain fatty acids under nutrient (N, Si or P) or light limitation, emphasize the importance of knowing the phase (e.g. logarithmic vs stationary) of the growth curve in batch cultures, since the nutritional value of the phytoplankters could change as cultures become dense and growth is terminated due to nutrient or light limitation.Presented at the XIIIth International Seaweed Symposium, University of British Columbia, Vancouver, Canada, August 1989.  相似文献   

15.
Certain factors influencing phytoplankton productivity are accentuated in turbid waters. They include mixing, spectral quality shifts, scattering, light fluctuations, and overall light attenuation. Measurements of productivity is influenced by the presence of inorganic turbidity. Together with the above factors high turbidity causes difficulties to assess and model phytoplankton productivity. Estimations of B, Pm B, Ik and m only reflect on the physiological condition of the phytoplankton, which differs little between water types of temperate regions. Measurement of integral vertical productivity, efficiency and fractional absorption by the phytoplankton of light energy conversion, however, are greatly influenced by inorganic turbidity. Because of high ratios of mixing to euphotic depth, the critical mixing depth is one of the most important factors influencing overall productivity in turbid waters.  相似文献   

16.
17.
Detectable levels of G-CSF by enzyme-linked immunosorbent assay (ELISA) were found in sera of 4 out of 15 patients with head and neck carcinomas. Also cells prepared from the tumors of these 4 patients secreted G-CSF. The supernatants of cells derived from all 15 patients did not contain granulocyte-monocyte CSF, monocyte CSF, tumor necrosis factor-, transforming growth factor- 1, epidermal growth factor, interleukin (IL)-1 and IL-6. These findings suggest that leukocytosis in patients with carcinomas might be due to the production of G-CSF by tumor cells.Abbreviations CSF colony stimulating factor - EGF epidermal growth factor - ELISA Enzyme-linked immunosorbent assay - G granulocyte - GM granulocyte-monocyte - IL interluekin - M monocyte - TGF transforming growth factor - TNF tumor necrosis factor  相似文献   

18.
Naidu SL  Long SP 《Planta》2004,220(1):145-155
Miscanthus × giganteus (Greef & Deuter ex Hodkinson & Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo physiological basis of this difference in photosynthesis, water vapor and CO2 exchange and modulated chlorophyll fluorescence were simultaneously monitored on attached leaf segments from plants grown and measured at 25/20°C or 14/11°C (day/night temperature). Analysis of the response of photosynthesis to internal CO2 concentration suggested that ribulose bisphosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate dikinase (PPDK) play a more important role in determining the response to low temperature than does phosphoenolpyruvate carboxylase (PEPc). For both species at both temperatures, the linear relationship between operating efficiency of whole-chain electron transport through photosystem II (PSII) and the efficiency of CO2 assimilation (CO2) was unchanged and had a zero intercept, suggesting the absence of non-photosynthetic electron sinks. The major limitation at low temperature could not be solely at Rubisco or at any other point in the Calvin cycle, since this would have increased leakage of CO2 to the mesophyll and increased PSII/CO2. This in vivo analysis suggested that maintenance of high photosynthetic rates in M. × giganteus at low temperature, in contrast to Z. mays, is most likely the result of different properties of Rubisco and/or PPDK, reduced susceptibility to photoinhibition, and the ability to maintain high levels of leaf absorptance during growth at low temperature.  相似文献   

19.
Communities of marine phytoplankton consist of cells of many different sizes. The size-structure of these communities often varies predictably with environmental conditions in aquatic systems. It has been hypothesized that physiological differences in nutrient and light requirements and acquisition efficiencies contribute to commonly observed correlations between phytoplankton community size structure and resource availability. Using physiological models we assess how light and nutrient availability can alter the relative growth rates of phytoplankton species of different cell sizes. Our models predict a change in the size dependence of growth rate depending on the severity of limitation by light and nutrient availability. Under conditions of growth-saturated resource supply, phytoplankton growth rate (mol C ) scales with cell volume with a size-scaling exponent of ; light limitation reduces the size-scaling exponent to approximately , and nutrient limitation decreases the exponent to as a consequence of the size-scaling of resource acquisition. Exponents intermediate between and occur under intermediate availability of light and nutrients and depend on the size-scaling of pigment photoacclimation and the size range examined.  相似文献   

20.
Primary productivity has been measured routinely at Lake Tahoe since 1967, and a number of mechanisms underlying variability in the productivity record have now been identified. A long-term trend due to nutrient loading dominates the series. Seasonality also is prominent, apparently controlled by direct physical factors unrelated to the trophic cascade. A 3-yr cycle has been detected and several possible mechanisms are considered. Irregular fluctuations also are present, caused in part by isolated events (a forest fire) and recurring but variable phenomena (spring mixing). Except possibly for the 3-yr cycle, the known sources of variability appear to operate bottom-up through direct physical and chemical effects on the phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号